斯坦福ML公开课笔记15我们在上一篇笔记中讲到了PCA(主成分分析)。PCA是一种直接的降维方法。通过求解特征值与特征向量,并选取特征值较大的一些特征向量来达到降维的效果。本文继续PCA的话题,包含PCA的一个应用——LSI(Latent Semantic Indexing, 隐含语义索引)和PCA...
分类:
其他好文 时间:
2016-01-24 16:50:21
阅读次数:
197
斯坦福ML公开课笔记15
我们在上一篇笔记中讲到了PCA(主成分分析)。PCA是一种直接的降维方法,通过求解特征值与特征向量,并选取特征值较大的一些特征向量来达到降维的效果。
本文继续PCA的话题,包括PCA的一个应用——LSI(Latent Semantic Indexing, 隐含语义索引)和PCA的一个实现——SVD(Singular Value Decomposition,奇异值分解),在SVD和LSI结束之后,关于PCA的内容就告一段落。视频的后半段开始讲无监督学习的一种——ICA(Indepen...
分类:
其他好文 时间:
2014-07-22 14:16:14
阅读次数:
314