因子分析与因子分析法主成分分析通过线性组合将原变量综合成几个主成分,用较少的综合指标来代替原来较多的指标(变量)。在多变量分析中,某些变量间往往存在相关性。是什么原因使变量间有关联呢?是否存在不能直接观测到的、但影响可观测变量变化的公共因子?因子分析法(Factor Analysis)就是寻找这些公 ...
分类:
其他好文 时间:
2019-02-01 22:36:09
阅读次数:
213
主成分分析(PCA)原理详解 主成分分析(PCA)原理详解 主成分分析(PCA)原理详解 主成分分析(PCA)原理详解 一、PCA简介 1. 相关背景 上完陈恩红老师的《机器学习与知识发现》和季海波老师的《矩阵代数》两门课之后,颇有体会。最近在做主成分分析和奇异值分解方面的项目,所以记录一下心得体会 ...
分类:
其他好文 时间:
2019-01-27 16:31:29
阅读次数:
186
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结。这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结。LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了 ...
分类:
其他好文 时间:
2019-01-27 14:40:27
阅读次数:
181
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结。这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结。LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了 ...
分类:
其他好文 时间:
2019-01-27 14:33:22
阅读次数:
206
在主成分分析(PCA)原理总结中,我们对降维算法PCA做了总结。这里我们就对另外一种经典的降维方法线性判别分析(Linear Discriminant Analysis, 以下简称LDA)做一个总结。LDA在模式识别领域(比如人脸识别,舰艇识别等图形图像识别领域)中有非常广泛的应用,因此我们有必要了 ...
分类:
其他好文 时间:
2019-01-27 13:12:10
阅读次数:
265
奇异值分解(SVD)原理与在降维中的应用 https://www.cnblogs.com/pinard/p/6251584.html 最通俗易懂的PCA主成分分析推导 https://blog.csdn.net/u012526436/article/details/80868294,https:// ...
分类:
其他好文 时间:
2019-01-21 16:01:29
阅读次数:
208
在数据挖掘过程中,当一个对象有多个属性(即该对象的测量过程产生多个变量)时,会产生高维度数据,这给数据挖掘工作带来了难度,我们希望用较少的变量来描述数据的绝大多数信息,此时一个比较好的方法是先对数据进行降维处理。数据降维过程不是简单提取部分变量进行分析,这样的方式法当然会降低数据维度,但是这是非常不 ...
分类:
其他好文 时间:
2019-01-19 20:02:34
阅读次数:
300
主成分分析: 主成分分析: 有一个集合筛选出对这个集合影响较大的n个因素就是主成分分析。 主成分分析的目的是在于降维,其结果是把多个指标归约为少数的几个指标,这少数的几个指标的表现形式一般为原来指标体系中的某几个指标线性组合;逐步回归的目的是为了剔除影响目标值不显著的指标,其结果是保留原指标体系中影 ...
分类:
其他好文 时间:
2019-01-19 18:52:48
阅读次数:
608
在数据挖掘过程中,当一个对象有多个属性(即该对象的测量过程产生多个变量)时,会产生高维度数据,这给数据挖掘工作带来了难度,我们希望用较少的变量来描述数据的绝大多数信息,此时一个比较好的方法是先对数据进行降维处理。数据降维过程不是简单提取部分变量进行分析,这样的方式法当然会降低数据维度,但是这是非常不 ...
分类:
其他好文 时间:
2019-01-19 16:27:32
阅读次数:
231
PCA和LDA都是降维算法,他们的主要区别是: PCA为无监督方法,主要是主成分分析方法,Principal Component Analysis, 简称PCA。 PCA可以降到任意维度。 LDA是有监督方法,主要是线性判别分析法,Linear Discriminant Analysis ,简称LD ...
分类:
其他好文 时间:
2019-01-13 02:01:09
阅读次数:
163