码迷,mamicode.com
首页 >  
搜索关键字:朴素贝叶斯、分类器    ( 109个结果
文本分类之情感分析– 停用词和惯用语
改善特征提取往往可以对分类的accuracy(和precision和召回率)有显著的正面影响。在本文中,我将评估word_feats的两项修改特征提取的方法: 过滤停用词 包含二元语法搭配 为了有效地做到这一点,我们将修改前面的代码,这样我们就可以使用任意的特征提取函数,它接收一个文件中的词,并返回特征字典。和以前一样,我们将使用这些特征来训练朴素贝叶斯分类器。 ...
分类:其他好文   时间:2014-07-19 11:22:04    阅读次数:593
文本分类之情感分析 – 朴素贝叶斯分类器
情感分析正成为研究和社交媒体分析的热点领域,尤其是在用户评论和微博上。它是文本挖掘的一种特殊情况,一般关注在识别正反观点上,虽然它常不很准确,它仍然是有用的。为简单起见(因为训练数据容易获取),我将重点放在2个可能的情感分类:积极的和消极的。 NLTK 朴素贝叶斯分类 NLTK附带了所有你需要的情感分析的入手的东西:一份带有分为POS和NEG类别的电影评论语料,以及一些可训练分类器。我...
分类:其他好文   时间:2014-07-19 02:14:25    阅读次数:338
数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。眼下研究较多的贝叶斯分类器主要有四种,各自是:Naive Bayes、TAN、BAN和GBN。 贝叶斯网络是一个带有概率...
分类:其他好文   时间:2014-07-09 15:36:36    阅读次数:134
数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。眼下研究较多的贝叶斯分类器主要有四种,各自是:Naive Bayes、TAN、BAN和GBN。 贝叶斯网络是一个带有概率...
分类:其他好文   时间:2014-07-07 18:07:11    阅读次数:151
数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。眼下研究较多的贝叶斯分类器主要有四种,各自是:Naive Bayes、TAN、BAN和GBN。 贝叶斯网络是一个带有概率...
分类:其他好文   时间:2014-07-03 22:53:16    阅读次数:246
数据挖掘十大经典算法(9) 朴素贝叶斯分类器 Naive Bayes
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。眼下研究较多的贝叶斯分类器主要有四种,各自是:Naive Bayes、TAN、BAN和GBN。 贝叶斯网络是一个带有概率...
分类:其他好文   时间:2014-06-13 13:46:25    阅读次数:197
朴素贝叶斯分类器
朴素贝叶斯方法总结...
分类:其他好文   时间:2014-06-08 14:42:09    阅读次数:340
【机器学习算法-python实现】扫黄神器-朴素贝叶斯分类器的实现
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景      以前我在外面公司实习的时候,一个大神跟我说过,学计算机就是要一个一个贝叶斯公式的套用来套用去。嗯,现在终于用到了。朴素贝叶斯分类器据说是好多扫黄软件使用的算法,贝叶斯公式也比较简单,大学做概率题经常会用到。核心思想就是找出特征值对结果影响概率最大的项。公式如下:...
分类:编程语言   时间:2014-04-29 13:15:21    阅读次数:297
PGM学习之三 朴素贝叶斯分类器(Naive Bayes Classifier)
介绍朴素贝叶斯分类器的文章已经很多了。本文的目的是通过基本概念和微小实例的复述,巩固对于朴素贝叶斯分类器的理解。一 朴素贝叶斯分类器基础回顾 朴素贝叶斯分类器基于贝叶斯定义,特别适用于输入数据维数较高的情况。虽然朴素贝叶斯分类器很简单,但是它确经常比一些复杂的方法表现还好。 ...
分类:其他好文   时间:2014-04-29 10:26:47    阅读次数:457
109条   上一页 1 ... 9 10 11
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!