英文原文:4 Self-Study Machine Learning Projects
学习机器学习有很多方法,大多数人选择从理论开始。
如果你是个程序员,那么你已经掌握了把问题拆分成相应组成部分及设计小项目原型的能力,这些能力能帮助你学习新的技术、类库和方法。这些对任何一个职业程序员来说都是重要的能力,现在它们也能用在初学机器学习上。
要想有效地学习机器学习你必须学习相关理论,...
分类:
其他好文 时间:
2014-06-05 11:44:35
阅读次数:
208
神经网络常用于机器学习中的分类,常用的分类算法有:朴素贝叶斯,遗传算法,神经网络,支持向量机等。
在互联网发达的今天,有很多东西需要进行分类,在分类之前,我们常常是有一些数据,找出这些数据符合什么样的
模型,然后根据这些已有数据来预测将来,神经网络就是用来进行这种数据建模的。
神经网络一般情况是有个输入,有个输出,在输入层和输出层之间通常还有若干个隐含层。实际上,在1989年...
分类:
其他好文 时间:
2014-06-05 02:40:25
阅读次数:
261
原创博客,转载请:http://blog.csdn.net/zhjm07054115/article/details/27577181...
分类:
其他好文 时间:
2014-06-03 04:53:59
阅读次数:
276
一、Mahout简单介绍查了Mahout的中文意思——驭象的人,再看看Mahout的logo,好吧,想和小黄象happy地玩耍,得顺便陪陪这位驭象人耍耍了...附logo:(就是他,骑在象头上的那个Mahout)步入正文啦:
Mahout是一个非常强大的数据挖掘工具,是一个分布式机器学习算法的集.....
分类:
其他好文 时间:
2014-06-02 08:14:03
阅读次数:
273
1.在高纬度大数量的数据情况下,用线性+松弛因子做SVM效果是很不错的2.在高纬度大数量的情况下,一般用批量梯度下降做计算效果会很好3.在低纬度大数量的情况下,可以用牛顿法来求解,一般迭代两三次就好了4.有个叫Le
BOTTON 的人,对常用目标函数的SGD公式做了很好的推导5.有一个响亮求导的书叫...
分类:
其他好文 时间:
2014-06-02 08:07:18
阅读次数:
250
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering
算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是
L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。目录...
分类:
其他好文 时间:
2014-06-02 07:31:21
阅读次数:
227
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering
算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是
L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。目录链接....
分类:
其他好文 时间:
2014-06-02 07:30:03
阅读次数:
249
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering
算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是
L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。目录链接....
分类:
其他好文 时间:
2014-06-02 07:28:41
阅读次数:
197
机器学习算法中经常碰到非线性优化问题,如 Sparse Filtering
算法,其主要工作在于求解一个非线性极小化问题。在具体实现中,大多调用的是成熟的软件包做支撑,其中最常用的一个算法是
L-BFGS。为了解这个算法的数学机理,这几天做了一些调研,现把学习过程中理解的一些东西整理出来。目录链.....
分类:
其他好文 时间:
2014-06-02 07:28:03
阅读次数:
210
二叉树的层序遍历(要求区分层,例如每层遍历完输出换行)
单单层序遍历非常简单,一个队列就搞定了,但是区分层则要麻烦些。总的思路无非就是在每次print的时候,要能通过某个东西
区分出当前节点是否是一层最后一个节点,或者下一层的最后一个节点,感觉有点类似于机器学习中找个区分度明显的特征:
1.自己的解法,在单队列基础上,输入队列的数据添加一个标志 ,LevelHeaded,同时...
分类:
其他好文 时间:
2014-06-01 10:49:44
阅读次数:
267