码迷,mamicode.com
首页 >  
搜索关键字:最大匹配    ( 1308个结果
二分图行列匹配---> hdu2119,hdu1498
hdu2119题意:给定一个矩形方格,每个格子里面的数字是0或者1,每次操作可以把一整行或列的1变成0,问最少多少次操作能将1全部变为0一次可以消除某一行或者某一列的1但是可以这么想,最多有多少个1即不在同一行,也不在同一列,有多少个,那么就要消多少次那么就是求行和列的最大匹配 1 #include...
分类:其他好文   时间:2014-10-12 20:40:18    阅读次数:185
二分图最大匹配
在图论中,匹配是指两两没有公共点的边集。二分图的最大匹配是这样的:给出一个二分图,找到一个边数最大的匹配,即选尽量多的边,使得任意两条选中的边没有公共点。如果所有的点都是匹配点(匹配中的某一条边的端点),则称这个匹配是完美匹配(perfect matching)。下面我们考虑二分图都是联通图,如果是...
分类:其他好文   时间:2014-10-12 12:16:17    阅读次数:200
POJ1469 COURSES 【二分图最大匹配·HK算法】
COURSES Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17777   Accepted: 7007 Description Consider a group of N students and P courses. Each student visit...
分类:编程语言   时间:2014-10-10 23:42:24    阅读次数:331
串的最大匹配算法_向永红.pdf
分类:其他好文   时间:2014-10-10 15:13:44    阅读次数:205
计算二分图最大匹配的Hopcroft-Karp算法-[1973年原始论文, 附翻译的中文版]
中译本:英文版:
分类:其他好文   时间:2014-10-10 15:04:34    阅读次数:300
poj Going Home
Going Home   题目:    给出一个N*M的图,图上的m表示人,H表示房子,每座房子只能有一个人,要求你所有人到房子中总步数最少。m个数与H个数一样多。   算法分析:    这个题目还是比较裸的。可以想到先求出每个人到每座房子的距离。然后求出最小花费,这个好像就是最小费用流吧?一开始用了KM写完后,发现。。。。哪里不对啊?后来才觉悟,原来题目是求解最小花费,KM是最大匹配...
分类:其他好文   时间:2014-10-10 09:46:54    阅读次数:167
Bipartitegraph1442
题意:派一些伞兵去那个镇里,要到达所有的路口,有一些或者没有伞兵可以不去那些路口,只要其他人能完成这个任务。每个在一个路口着陆了的伞兵可以沿着街去到其他路口。我们的任务是求出去执行任务的伞兵最少可以是多少个。一个最小路径覆盖的问题:路口是节点,街道是有向边最小路径覆盖=顶点数–二分最大匹配数。/*P...
分类:其他好文   时间:2014-10-09 02:46:27    阅读次数:119
Bipartitegraph1325
最小点覆盖数:用最少的点让每一条边都至少和其中的一个点相关联。点数=最大匹配数二分图的最大匹配有两种求法,第一种是最大流;第二种就是我现在要讲的匈牙利算法。从二分图中找出一条路径来,让路径的起点和终点都是还没有匹配过的点,并且路径经过的连线是一条没被匹配、一条已经匹配过,再下一条又没匹配这样交替地出...
分类:其他好文   时间:2014-10-09 02:13:57    阅读次数:139
Bipartitegraph2446
题意:m*n的棋盘,有几个点不能覆盖,用1*2(可转成2*1)的矩形覆盖,不重叠,问能否覆盖。思路:将棋盘分成黑白的,然后黑与白进行二分匹配即可。对于每个点,都可以与它周围四个方向的任意一点用覆盖物覆盖,因而变成完备匹配问题二分图最大匹配就是完备匹配#include#include#includeu...
分类:其他好文   时间:2014-10-09 02:13:17    阅读次数:193
Bipartitegraph2594
最小路径覆盖就是找出最小的路径条数(每个顶点只用一次),使图成为的一个路径覆盖.最小路径覆盖数=节点数-最大匹配数题意:不是赤裸裸的最小路径覆盖(走遍所有的点),正常的最小路径覆盖中两个人走的路径不能有重复的点,而本题可以重复。分析:我们仍可将问题转化为最小路径覆盖。(通过传递闭包,在所有能最终连通...
分类:其他好文   时间:2014-10-09 01:09:17    阅读次数:245
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!