为什么要探索发展史(实例分析)? 我们首先来看看一些卷积神经网络的实例分析,为什么要看这些实例分析呢? 上周我们讲了基本构建,比如卷积层、池化层以及全连接层这些组件。 事实上,过去几年计算机视觉研究中的大量研究都集中在如何把这些基本构件组合起来,形成有效的卷积神经网络。 最直观的方式之一就是去看一些 ...
分类:
其他好文 时间:
2020-02-27 20:39:49
阅读次数:
64
为什么使用卷积?(Why convolutions?) 我们来分析一下卷积在神经网络中如此受用的原因,然后对如何整合这些卷积,如何通过一个标注过的训练集训练卷积神经网络做个简单概括。和只用全连接层相比,卷积层的两个主要优势在于参数共享和稀疏连接,举例说明一下。 假设有一张32×32×3维度的图片,这 ...
分类:
其他好文 时间:
2020-02-27 20:34:30
阅读次数:
68
卷积步长(Strided convolutions) 卷积中的步幅是另一个构建卷积神经网络的基本操作,让我向你展示一个例子。 如果你想用3×3的过滤器卷积这个7×7的图像,和之前不同的是,我们把步幅设置成了2。你还和之前一样取左上方的3×3区域的元素的乘积,再加起来,最后结果为91。 只是之前我们移 ...
分类:
其他好文 时间:
2020-02-27 19:19:43
阅读次数:
112
1、感知野: 在卷积神经网络中,感受野(Receptive Field)的定义是卷积神经网络每一层输出的特征图(feature map) 上的像素点在输入图片上映射的区域大小。再通俗点的解释是,特征图上的一个点对应输入图上的区域,如图1所示。 感受野(Receptive Field),指的是神经网络 ...
分类:
其他好文 时间:
2020-02-24 13:10:57
阅读次数:
125
图像增广 在5.6节(深度卷积神经网络)里我们提到过,大规模数据集是成功应用深度神经网络的前提。图像增广(image augmentation)技术通过对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模。图像增广的另一种解释是,随机改变训练样本可以降低模型对某些属性的 ...
分类:
其他好文 时间:
2020-02-24 00:39:50
阅读次数:
84
样式迁移 如果你是一位摄影爱好者,也许接触过滤镜。它能改变照片的颜色样式,从而使风景照更加锐利或者令人像更加美白。但一个滤镜通常只能改变照片的某个方面。如果要照片达到理想中的样式,经常需要尝试大量不同的组合,其复杂程度不亚于模型调参。 在本节中,我们将介绍如何使用卷积神经网络自动将某图像中的样式应用 ...
分类:
其他好文 时间:
2020-02-24 00:15:54
阅读次数:
77
这些年深度学习的出现,让光学字符识别(OCR)技术焕发第二春。现在光学字符识别(OCR)基本都用卷积神经网络来做了,而且识别率也是惊人的好,人们也不再需要花大量时间去设计字符特征了。 在光学字符识别(OCR)系统中,人工神经网络主要充当特征提取器和分类器的功能,输入是字符图像,输出是识别结果,一气呵 ...
分类:
其他好文 时间:
2020-02-21 18:30:23
阅读次数:
130
经典卷积神经网络 "1.LeNet" "2.AlexNet" "3.VGG" "4.NiN" "5.GoogleNet" 1.LeNet 卷积层块里的基本单位是卷积层后接平均池化层:卷积层用来识别图像里的空间模式,如线条和物体局部,之后的平均池化层则用来降低卷积层对位置的敏感性。卷积层块由两个这样的 ...
分类:
其他好文 时间:
2020-02-20 00:15:58
阅读次数:
118
卷积神经网络 二维卷积层 ?维卷积层将输?和卷积核做互相关运算,并加上?个标量偏差来得到输出。卷积层的模型参数包括了卷积核和标量偏差。在训练模型的时候,通常我们先对卷积核随机初始化,然后不断迭代卷积核和偏差。 二维互相关运算(cross correlation) 互相关运算和卷积运算 为了得到卷积运 ...
分类:
其他好文 时间:
2020-02-19 21:06:02
阅读次数:
125
卷积神经网络基础 "1.二维卷积层" "2.填充和步幅" "3.多输入通道和多输出通道" "4.卷积层与全连接层的对比" "5.池化" 1.二维卷积层 二维互相关(cross correlation)运算的输入是一个二维输入数组和一个二维核(kernel)数组,输出也是一个二维数组,其中核数组通常称 ...
分类:
其他好文 时间:
2020-02-18 14:36:26
阅读次数:
84