一.协同过滤算法基于用户的协同过滤算法:这种算法最大的问题如何判断并量化两人的相似性,思路是这样
例子:
有3首歌放在那里,《最炫民族风》,《晴天》,《Hero》。
A君,收藏了《最炫民族风》,而遇到《晴天》,《Hero》则总是跳过;
B君,经常单曲循环《最炫民族风》,《晴天》会播放完,《Hero》则拉黑了
C君,拉黑了《最炫民族风》,而《晴天》《Hero》都收藏了。
我们都看出来了,A...
分类:
其他好文 时间:
2016-04-29 19:47:47
阅读次数:
186
16.1 问题形式化 16.2 基于内容的推荐系统 16.3 协同过滤 16.4 协同过滤算法 16.5 矢量化:低秩矩阵分解 16.6 推行工作上的细节:均值归一化 16.1 问题形式化 16.2 基于内容的推荐系统 16.3 协同过滤 16.4 协同过滤算法 16.5 矢量化:低秩矩阵分解 16 ...
分类:
其他好文 时间:
2016-04-28 00:23:14
阅读次数:
339
一.协同过滤算法基于用户的协同过滤算法:这种算法最大的问题如何判断并量化两人的相似性,思路是这样
例子:
有3首歌放在那里,《最炫民族风》,《晴天》,《Hero》。
A君,收藏了《最炫民族风》,而遇到《晴天》,《Hero》则总是跳过;
B君,经常单曲循环《最炫民族风》,《晴天》会播放完,《Hero》则拉黑了
C君,拉黑了《最炫民族风》,而《晴天》《Hero》都收藏了。
我们都看出来了,A...
分类:
其他好文 时间:
2016-04-24 06:28:56
阅读次数:
357
协同过滤推荐算法是诞生最早,并且较为著名的推荐算法。主要的功能是预测和推荐。算法通过对用户历史行为数据的挖掘发现用户的偏好,基于不同的偏好对用户进行群组划分并推荐品味相似的商品。协同过滤推荐算法分为两类,分别是基于用户的协同过滤算法(user-based collaboratIve filtering),和基于物品的协同过滤算法(item-based collaborative filtering...
分类:
编程语言 时间:
2016-04-22 19:03:51
阅读次数:
203
本文来自:http://blog.fens.me/hadoop-mahout-maven-eclipse/ 前言 基于Hadoop的项目,不管是MapReduce开发,还是Mahout的开发都是在一个复杂的编程环境中开发。Java的环境问题,是困扰着每个程序员的噩梦。Java程序员,不仅要会写Jav ...
分类:
其他好文 时间:
2016-04-19 19:35:58
阅读次数:
189
本文来自于:http://blog.fens.me/hadoop-mahout-mapreduce-itemcf/ 前言 Mahout是Hadoop家族一员,从血缘就继承了Hadoop程序的特点,支持HDFS访问和MapReduce分步式算法。随着Mahout 的发展,从0.7版本开始,Mahout ...
分类:
其他好文 时间:
2016-04-19 19:31:03
阅读次数:
342
推荐系统分类 基于应用领域分类:电子商务推荐,社交好友推荐,搜索引擎推荐,信息内容推荐基于设计思想:基于协同过滤的推荐,基于内容的推荐,基于知识的推荐,混合推荐基于使用何种数据:基于用户行为数据的推荐,基于用户标签的推荐,基于社交网络数据,基于上下文信息(时间上下文,地点上下文等等) 协同过滤的基本 ...
分类:
其他好文 时间:
2016-04-19 13:48:00
阅读次数:
306
# 第二章:推荐系统入门原文:http://guidetodatamining.com/chapter-2/内容:* 推荐系统工作原理* 社会化协同过滤工作原理* 如何找到相似物品* 曼哈顿距离* 欧几里得距离* 闵可夫斯基距离* 皮尔逊相关系数* 余弦相似度* 使用Python实现K最邻近算法* ...
分类:
其他好文 时间:
2016-04-16 00:47:07
阅读次数:
321
推荐系统中常用算法 以及优点缺点对比 在 推荐系统简介中,我们给出了推荐系统的一般框架。很明显,推荐方法是整个推荐系统中最核心、最关键的部分,很大程度上决定了推荐系统性能的优劣。目前,主要的推荐方法包括:基于内容推荐、协同过滤推荐、基于关联规则推荐、基于效用推荐、基于知识推荐和组合推荐。 一、基于内 ...
分类:
编程语言 时间:
2016-04-11 23:59:34
阅读次数:
1132
推荐算法主要分为基于内容的算法和协同过滤. 协同过滤的两种基本方法是基于邻居的方法(基于内容/物品的协同过滤)和隐语义模型. 矩阵分解乃是实现隐语义模型的基石.
矩阵分解根据用户对物品的评分, 推断出用户和物品的隐语义向量, 然后根据用户和物品的隐语义向量来进行推荐.
推荐系统用到的数据可以有显式评分和隐式评分. 显式评分时用户对物品的打分, 显式评分矩阵通常非常稀疏. 隐式评分是指用...
分类:
其他好文 时间:
2016-04-09 07:03:40
阅读次数:
224