1、自编码的定义 自编码器是一种数据的压缩算法,属于无监督学习,以自身X作为输出值,但输出值X‘ 和自身X之间还是有一些差异的。自编码器也是一种有损压缩,可以通过使得损失函数最小,来实现X’ 近似于X的值。简单的自编码器是一种三层的神经网络模型,包含数据输入层、隐藏层、输出重构层,同时也是一种无监督 ...
分类:
其他好文 时间:
2018-07-13 00:03:22
阅读次数:
5793
一,均方误差 作为机器学习中常常用于损失函数的方法,均方误差频繁的出现在机器学习的各种算法中,但是由于是舶来品,又和其他的几个概念特别像,所以常常在跟他人描述的时候说成其他方法的名字。 均方误差的数学表达为: 如上图所示,通过计算每个预测值和实际值之间的差值的平方和再求平均,机器学习中它经常被用于表 ...
分类:
其他好文 时间:
2018-07-12 18:05:59
阅读次数:
269
在应用机器学习算法时,我们通常采用梯度下降法来对采用的算法进行训练。其实,常用的梯度下降法还具体包含有三种不同的形式,它们也各自有着不同的优缺点。 下面我们以线性回归算法来对三种梯度下降法进行比较。 一般线性回归函数的假设函数为: 对应的损失函数为: 下图为一个二维参数(θ0和θ1)组对应能量函数的 ...
分类:
其他好文 时间:
2018-07-11 14:47:25
阅读次数:
190
tf.nn.nce_loss是word2vec的skip-gram模型的负例采样方式的函数,下面分析其源代码。 1 上下文代码 其中, train_inputs中的就是中心词,train_label中的就是语料库中该中心词在滑动窗口内的上下文词。 所以,train_inputs中会有连续n-1(n为 ...
分类:
其他好文 时间:
2018-07-09 17:17:32
阅读次数:
621
17.1大型数据集的学习 首先通过学习曲线判断是否增大数据集有效: 高方差时(交叉验证集误差减去训练集误差大时)增加数据集可以提高系统。下图中左图增加数据集有效,右图无效。 17.2随机梯度下降法 随机梯度下降法是只使用一个样本来迭代,其损失函数为: 迭代过程为: 特点: (1)计算量小,迭代速度快 ...
分类:
其他好文 时间:
2018-07-07 17:45:50
阅读次数:
201
1. scikit-learn GBDT类库概述 在sacikit-learn中,GradientBoostingClassifier为GBDT的分类类, 而GradientBoostingRegressor为GBDT的回归类。两者的参数类型完全相同,当然有些参数比如损失函数loss的可选择项并不相 ...
分类:
其他好文 时间:
2018-07-04 18:53:42
阅读次数:
266
损失函数是机器学习中常用于优化模型的目标函数,无论是在分类问题,还是回归问题,都是通过损失函数最小化来求得我们的学习模型的。损失函数分为经验风险损失函数和结构风险损失函数。经验风险损失函数是指预测结果和实际结果的差别,结构风险损失函数是指经验风险损失函数加上正则项。通常表示为: θ*是我们通过损失函 ...
分类:
其他好文 时间:
2018-07-01 20:59:46
阅读次数:
244
4.1多维特征 上图中列数即为特征的个数,行数是样本数。函数假设如下: 其中x0=1。 4.2多变量梯度下降 和单变量的损失函数相同: 其中, 求导迭代如下: 4.3梯度下降法实践1-特征缩放 特征之间的尺度变化相差很大(如一个是0-1000,一个是0-5),梯度算法需要非常多次的迭代才能收敛,如下 ...
分类:
其他好文 时间:
2018-07-01 20:57:22
阅读次数:
173
更多风控建模、大数据分析等内容请关注公众号《大数据风控的一点一滴》 在分类问题中常常遇到一个比较头疼的问题,即目标变量的类别存在较大偏差的非平衡问题。这样会导致预测结果偏向多类别,因为多类别在损失函数中所占权重更大,偏向多类别可以使损失函数更小。 处理非平衡问题一般有两种方法,欠抽样和过抽样。欠抽样 ...
分类:
其他好文 时间:
2018-07-01 20:25:55
阅读次数:
184
**更多风控建模、大数据分析等内容请关注公众号《大数据风控的一点一滴》在分类问题中常常遇到一个比较头疼的问题,即目标变量的类别存在较大偏差的非平衡问题。这样会导致预测结果偏向多类别,因为多类别在损失函数中所占权重更大,偏向多类别可以使损失函数更小。处理非平衡问题一般有两种方法,欠抽样和过抽样。欠抽样方法可以生成更简洁的平衡数据集,并减少了学习成本。但是它也带来了一些问题,它会删掉一些有用的样本,尤
分类:
其他好文 时间:
2018-07-01 20:24:39
阅读次数:
165