贝叶斯公式描述的是一组条件概率之间相互转化的关系。
在机器学习中,贝叶斯公式可以应用在分类问题上。这篇文章是基于自己的学习所整理,并利用一个垃圾邮件分类的例子来加深对于理论的理解。
这里我们来解释一下朴素这个词的含义:
1)各个特征是相互独立的,各个特征出现与其出现的顺序无关;
2)各个特征地位同等重要;
以上都是比较强的假设
下面是朴素贝叶斯分类的流程:...
分类:
其他好文 时间:
2014-10-09 21:39:17
阅读次数:
205
这两天学习了一个相对比较简单但是十分实用的分类算法——贝叶斯分类算法,与我做项目使用的svm算法相比确实有很多精妙之处,。好比撒尿牛丸——好吃又好玩,而贝叶斯分类器则是简单又强大。本文结合简单天气预报进行讲解。
贝叶斯定理:
贝叶斯定理是概率论里面一个计算条件概率的法器!为什么是法器,且看后文。先摆出计算公式:
也许乍一看这公式没什么,但是我们先将公式移项得:P(A|B)P(B)=P...
分类:
其他好文 时间:
2014-10-09 16:31:18
阅读次数:
274
朴素贝叶斯分类器一、贝叶斯定理所谓"条件概率"(Conditional probability),就是指在事件B发生的情况下,事件A发生的概率,用P(A|B)来表示。根据文氏图,可以发现同理可得,所以,即其中,P(A)称为"先验概率"(Prior probability),即在B事件发生之前,我们对...
分类:
其他好文 时间:
2014-09-30 20:38:00
阅读次数:
330
今天介绍一种简单高效的分类器——朴素贝叶斯分类器(Naive Bayes Classifier)。
相信学过概率论的同学对贝叶斯这个名字应该不会感到陌生,因为在概率论中有一条重要的公式,就是以贝叶斯命名的,这就是“贝叶斯公式”...
分类:
其他好文 时间:
2014-09-30 10:02:52
阅读次数:
221
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类。眼下研究较多的贝叶斯分类器主要有四种,各自是:Naive Bayes、TAN、BAN和GBN。 贝叶斯网络是一个带有概率...
分类:
其他好文 时间:
2014-09-27 17:36:30
阅读次数:
185
源代码下载:NaviveBayesClassify.rarPreface文本的分类和聚类是一个比较有意思的话题,我以前也写过一篇blog《基于K-Means的文本聚类算法》,加上最近读了几本数据挖掘和机器学习的书籍,因此很想写点东西来记录下学习的所得。在本文的上半部分《基于朴素贝叶斯分类器的文本分类...
分类:
其他好文 时间:
2014-09-18 22:02:34
阅读次数:
325
1、概率密度函数
在分类器设计过程中(尤其是贝叶斯分类器),需要在类的先验概率和类条件概率密度均已知的情况下,按照一定的决策规则确定判别函数和决策面。但是,在实际应用中,类条件概率密度通常是未知的。那么,当先验概率和类条件概率密度都未知或者其中之一未知的情况下,该如何来进行类别判断呢?其实,只要我们能收集到一定数量的样本,根据统计学的知识,可以从样本集来推断总体概率分布。这种估计方法,通常称之为...
分类:
其他好文 时间:
2014-09-10 14:13:20
阅读次数:
294
1.调用庖丁分词器,分词grid@server01:~/data$hadoopjarmrtokenize.jartokenize.TokenizeDriver/home/grid/data/lesson8/home/grid/output/sportwords14/08/3121:59:33INFOinput.FileInputFormat:Totalinputpathstoprocess:10205.....14/08/3122:05:25INFOmapred.JobClient:Map..
分类:
其他好文 时间:
2014-09-01 15:48:44
阅读次数:
296
ID3算法是J. Ross Quinlan在1975提出的分类预测算法,当时还没有数据挖掘吧,哈哈哈。该算法的核心是“信息熵”,属于数学问题,我也是从这里起发现数据挖掘最底层最根本的不再是编程了,而是数学,编程只是一种实现方式而已,数学才是基础,如:朴素贝叶斯分类,小波聚类,尤其是我正在搞的支持向量...
分类:
其他好文 时间:
2014-08-31 11:46:11
阅读次数:
298
outlook
temperature
humidity
windy
play
yes
no
yes
no
yes
no
yes
no
yes
no
sunny
2
3
hot
2
2
high
3
4
...
分类:
其他好文 时间:
2014-08-26 09:53:05
阅读次数:
200