一、病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难。 某个医院早上收了六个门诊病人,如下表。 症状 职业 疾病 打喷嚏 护士 感冒 打喷嚏 农夫 过敏 头痛 建筑工人 脑震荡 头痛 建筑工人 感冒 打喷嚏 教师 感冒 头痛 教师 脑震荡 现在又来了第七个病人,是一个打 ...
分类:
其他好文 时间:
2017-04-05 16:22:21
阅读次数:
311
朴素贝叶斯公式 Hmm隐马尔科夫 动态规划: 线性回归: 逻辑回归(sigmoid):在线性组合的基础上加了个非线性的激活函数,用于解决二分类问题,softmax,用于解决多分类问题。 集成学习(连续模型):针对错误的模型进行训练,设置多个模型,每个模型都有不同的权重,逐层进行逻辑回归、或则其他逐层 ...
分类:
编程语言 时间:
2017-04-02 11:35:31
阅读次数:
165
1.从文本中构建词向量 将每个文本用python分割成单词,构建成词向量,这里首先需要一个语料库,为了简化我们直接从所给文本中抽出所有出现的单词构成一个词库。 2.利用词向量计算概率p(x|y) When we attempt to classify a document, we multiply ...
分类:
其他好文 时间:
2017-03-28 20:46:16
阅读次数:
287
写在前面的话:
我现在大四,毕业设计是做一个基于大数据的用户画像研究分析。所以开始学习数据挖掘的相关技术。这是我学习的一个新技术领域,学习难度比我以往学过的所有技术都难。虽然现在在一家公司实习,但...
分类:
编程语言 时间:
2017-03-27 14:49:58
阅读次数:
311
我理解的朴素贝叶斯模型 我想说:“任何事件都是条件概率。”为什么呢?因为我认为,任何事件的发生都不是完全偶然的,它都会以其他事件的发生为基础。换句话说,条件概率就是在其他事件发生的基础上,某事件发生的概率。 条件概率是朴素贝叶斯模型的基础。 假设,你的xx公司正在面临着用户流失的压力。虽然,你能计算 ...
分类:
其他好文 时间:
2017-03-23 23:25:15
阅读次数:
280
贝叶斯分类的基础——贝叶斯定理 这个定理解决了现实生活里经常遇到的问题:已知某条件概率(概率密度函数),如何得到两个事件交换后的概率,也就是在已知P(A|B)的情况下如何求得P(B|A)。这里先解释什么是条件概率: 表示事件B已经发生的前提下,事件A发生的概率,叫做事件B发生下事件A的条件概率。其基 ...
分类:
其他好文 时间:
2017-03-09 15:18:44
阅读次数:
231
简介: scikit-learn是一个基于NumPy、SciPy、Matplotlib的开源机器学习工具包。採用Python语言编写。主要涵盖分类、 回归和聚类等算法,比如knn、SVM、逻辑回归、朴素贝叶斯、随机森林、k-means等等诸多算法,官网上代码和文档 都非常不错,对于机器学习开发人员来 ...
分类:
其他好文 时间:
2017-03-08 22:33:30
阅读次数:
576
二、本周研究内容。 1、 贝叶斯算法的基本概念和原理: 朴素贝叶斯的思想基础是这样的:对于给出的待分类项,求解在此项出现的条件下各个类别出现的概率,哪个最大,就认为此待分类项属于哪个类别。 朴素贝叶斯分类的正式定义如下: 1、设为一个待分类项,而每个a为x的一个特征属性。 2、有类别集合。 3、计算 ...
分类:
其他好文 时间:
2017-03-07 22:56:18
阅读次数:
269
1. 朴素贝叶斯分类器 朴素贝叶斯分类器采用了“属性条件独立性假设”:对已知类别,假设所有属性相互独立,即假设每个属性独立的对分类结果发生影响。 d为属性数目,xi 为 x 在第 i 个属性上的取值,朴素贝叶斯分类器的表达式为: 令 Dc 表示训练集 D 中第 c 类样本的集合,例如西瓜数据集有两个 ...
分类:
编程语言 时间:
2017-03-07 10:42:32
阅读次数:
455