from math import sqrtdef multipl(a,b): sumofab=0.0 for i in range(len(a)): temp=a[i]*b[i] sumofab+=temp return sumofabdef corrc...
分类:
编程语言 时间:
2015-08-27 18:34:03
阅读次数:
396
欧几里德距离
>
计算两组数据之间的距离,偏好越相似的人其距离就越短。。。为了处理方便,需要一个函数来对偏好越相近的情况给出越大的值(0~1之间)。
皮尔逊相关系数相关度评价
>
皮尔逊相关系数是判断两组叔叔与某一直线拟合程度的一种度量。其对应的公式比欧几里德距离评价的计算公式要复杂,但是在数据不是很规范时会倾向于给出更好的结果。...
分类:
其他好文 时间:
2015-07-06 17:55:33
阅读次数:
116
理解皮尔逊相关的两个角度其一, 按照高中数学水平来理解, 皮尔逊相关(Pearson Correlation Coefficient)很简单, 可以看做将两组数据首先做Z分数处理之后, 然后两组数据的乘积和除以样本数Z分数一般代表正态分布中, 数据偏离中心点的距离.等于变量减掉平均数再除以标准差.(...
分类:
其他好文 时间:
2015-01-20 17:04:06
阅读次数:
228
在学到相关性度量的时候,有一个系数用来度量相似性(距离),这个系数叫做皮尔逊系数,事实上在统计学的时候就已经学过了,仅仅是当时不知道还能用到机器学习中来,这更加让我认为机器学习离不开统计学了。皮尔逊相关系数——Pearson correlation coefficient,用于度量两个变量之间的相关...
分类:
其他好文 时间:
2014-12-19 14:25:28
阅读次数:
217
根据集体智慧编程第二章内容,运用欧几里得距离算法或者皮尔逊相关系数算法,可以在数据库(SQL Server)中实现一个简单的推荐系统。项目背景:假设现在有一组来自基金销售网站的数据,记录了投资者购买基金的品种和购买的数量占该基金发售总量的百分比,我们可以利用这组数据为购买者提供一份推荐购买的基金列表...
分类:
数据库 时间:
2014-11-13 20:24:26
阅读次数:
344
是使用Java语言实现的简单的CORR(correlation coefficient,相关系数)。 在统计学中,皮尔逊积矩相关系数(英语:Pearson product-moment correlation coefficient,又称作 PPMCC或PCCs[1], 文章中常用r或Pearson's r表示)用于度量两个变量X和Y之间的相关(线性相关),其值介于-1与1之间。在自然科学领域中,该系数广泛用于度量两个变量之间的相关程度。它是由卡尔·皮尔逊从弗朗西斯·高尔顿在19世纪80年代提出的一个相似...
分类:
编程语言 时间:
2014-10-20 15:17:37
阅读次数:
335
欧几里德距离是推荐算法中比较简单的一种,他计算两个用户之间的相似程度其计算方法为,以豆瓣电影为例假设用户A对电影 f1.。。。fn的评价分数分别为 r1.。。。rn用户B对电影 f1.。。。fn的评价分数分别为s1.。。。。sn暂且假设A和B都对这些电影评价过那么用户A和B的欧几里德距离计算方法为先...
分类:
其他好文 时间:
2014-08-27 12:26:07
阅读次数:
213
向量之间的相似度
度量向量之间的相似度方法很多了,你可以用距离(各种距离)的倒数,向量夹角,Pearson相关系数等。
皮尔森相关系数计算公式如下:
分子是协方差,分子是两个变量标准差的乘积。显然要求X和Y的标准差都不能为0。
因为,所以皮尔森相关系数计算公式还可以写成:
当两个变量的线性关系增强时,相关系数趋于1或-1。
用户评分预测
...
分类:
其他好文 时间:
2014-08-21 19:28:24
阅读次数:
796
相关系数的值介于–1与+1之间,即–1≤r≤+1。其性质如下:当r>0时,表示两变量正相关,r rating_map = new HashMap(); /** * @param args */ public static void main(String[] args) { Simil...
分类:
编程语言 时间:
2014-08-06 18:55:31
阅读次数:
285