这是分类算法。之前的回归问题尝试预测的变量y是连续变量,在这个分类算法中,变量y是离散的,y只取{0,1}两个值。一般这种离散二值分类问题用线性回归效果不好。比如x3,y=1,那么当x>3的样本占得比例很大是,线性回归的直线斜率就会越来越小,y=0.5时对应的x判决点就会比3大,造成预测错误。若y取...
分类:
其他好文 时间:
2014-10-19 18:21:19
阅读次数:
179
在logistic方法中,g(z)会生成[0,1]之间的小数,但如何是g(z)只生成0或1?所以,感知器算法将g(z)定义如下:同样令,和logistic回归的梯度上升算法类似,学习规则如下:尽管看起来和之前的学习算法类似,但感知器算法是一种非常简便的学习算法,临界值和输出只能是0或1,是比logi...
分类:
编程语言 时间:
2014-10-19 18:19:15
阅读次数:
240
昨天学习完了Ng的第二课,总结如下:过拟合;欠拟合;参数学习算法;非参数学习算法局部加权回归KD tree最小二乘中心极限定律感知器算法sigmod函数梯度下降/梯度上升二元分类logistic回归
分类:
其他好文 时间:
2014-10-19 17:03:42
阅读次数:
302
本文主要讲解在matlab中实现Linear Regression和Logistic Regression的代码,并不涉及公式推导。具体的计算公式和推导,相关的机器学习文章和视频一大堆,推荐看Andrew NG的公开课。一、线性回归(Linear Regression)方法一、利用公式 :funct...
分类:
其他好文 时间:
2014-10-18 03:00:32
阅读次数:
357
回归: 在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如locally weighted回归,logistic回归,等等。训练集(training set)或者训练数据(traini...
分类:
其他好文 时间:
2014-10-16 00:42:01
阅读次数:
165
回归与梯度下降:回归在数学上来说是给定一个点集,能够用一条曲线去拟合之,如果这个曲线是一条直线,那就被称为线性回归,如果曲线是一条二次曲线,就被称为二次回归,回归还有很多的变种,如locally weighted回归,logistic回归,等等,这个将在后面去讲。用一个很简单的例子来说明回归,这个例...
分类:
其他好文 时间:
2014-10-16 00:32:31
阅读次数:
401
Logistic回归的理论内容上篇文章已经讲述过,在求解参数时可以用牛顿迭代,可以发现这种方法貌似太复杂,今天我们介绍另一种方法,叫梯度下降。当然求最小值就是梯度下降,而求最大值相对就是梯度上升。由于,如果,那么得到现在我们要找一组,使得所有的最接近,设现在我们要找一组,使得最小。这就是今天要介绍的...
分类:
编程语言 时间:
2014-10-15 22:52:11
阅读次数:
960
logistic回归与python实现,理论与实际结合。...
分类:
编程语言 时间:
2014-10-14 17:29:58
阅读次数:
290
参考:http://blog.csdn.net/dongtingzhizi/article/details/159627971.简述 在线性回归中,h函数的输出值为连续值,当需要进行归类时,输出的应该是离散值,如何将连续值转换成离散值? 如果分类结果只有两个,用1,0表示。我们希望有:函数1/(1+...
分类:
编程语言 时间:
2014-10-13 19:41:28
阅读次数:
198
1、k-近邻算法算法原理:存在一个样本数据集(训练样本集),并且我们知道样本集中的每个数据与其所属分类的对应关系。输入未知类别的数据后将新数据的每个特征与样本集中数据对应的特征进行比较,然后算法提取样本集中特征最相似(最近邻)的k组数据。然后将k组数据中出现次数最多的分类,来作为新数据的分类。算法步...
分类:
其他好文 时间:
2014-10-12 20:39:28
阅读次数:
199