码迷,mamicode.com
首页 >  
搜索关键字:any    ( 7409个结果
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.8
Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*B). \eex$$ (The corresponding relation for determinants i...
分类:其他好文   时间:2014-11-22 17:11:26    阅读次数:143
预生成事件/生成后事件命令行对话框
可以使用以下任意宏来指定文件位置,或在存在多重选择的情况下获取输入文件的实际名称。 这些宏不区分大小写。 宏说明$(ConfigurationName)当前项目配置的名称(例如,“Debug|Any CPU”)。$(OutDir)输出文件目录的路径,相对于项目目录。 这解析为“输出目录”属性的值。 ...
分类:其他好文   时间:2014-11-22 14:29:12    阅读次数:168
关于navigationbar的属性
//RootViewController.m- (void)viewDidLoad { // Do any additional setup after loading the view. [super viewDidLoad]; // Do any additional setu...
分类:其他好文   时间:2014-11-22 00:46:54    阅读次数:246
c++ two classes as each others' friends
In this case, Box need access to Cup.func, AND Cup need access to Box.func, both of which are private because I don't want any other class to have acc...
分类:编程语言   时间:2014-11-21 18:19:20    阅读次数:294
twisted udp编程
概述Unlike TCP, UDP has no notion of connections. A UDP socket can receive datagrams from any server on the network and send datagrams to any host on th...
分类:其他好文   时间:2014-11-21 18:08:38    阅读次数:447
OpenCV Tutorials —— Affine Transformations
仿射变换 Affine Transformation 1,It is any transformation that can be expressed in the form of a matrix multiplication (linear transformation) followed by...
分类:其他好文   时间:2014-11-21 18:03:05    阅读次数:184
Inventory of the materials to teach you how to query a date certain combination of dimensions
Please correct me if any omission or errorFrom theInventory Management-> journals-> Item Counting> Countingcan enter the inventory:Linescan create a n...
分类:其他好文   时间:2014-11-21 12:06:02    阅读次数:222
[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.7
Prove that for any vectors $$\bex u_1,\cdots,u_k,\quad v_1,\cdots,v_k, \eex$$ we have $$\bex |\det(\sef{u_i,v_j})|^2 \leq \det\sex{\sef{u_i,u_j}}\cdot...
分类:其他好文   时间:2014-11-21 10:21:56    阅读次数:155
[再寄小读者之数学篇](2014-11-21 关于积和式的一个不等式)
在 Rajendra Bhatia 的 Matrix Analysis 中, Exercise I.5.8 说: Prove that for any matrices $A,B$ we have $$\bex |\per (AB)|^2\leq \per (AA^*)\cdot \per (B^*...
分类:其他好文   时间:2014-11-21 09:06:12    阅读次数:179
用两种方法验证邮箱的合法性(最新)
代码:- (void)viewDidLoad{ [super viewDidLoad]; // Do any additional setup after loading the view. self.title=@"验证邮箱的合法性"; //最全面的验证邮箱...
分类:其他好文   时间:2014-11-20 16:52:53    阅读次数:159
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!