码迷,mamicode.com
首页 >  
搜索关键字:梯度下降 机器学习    ( 9962个结果
感知机
机器学习算法 原理、实践与实战 —— 感知机感知机(perceptron)是二分类的线性分类模型,输入为特征向量,输出为实例的类别,取值+1和-1。感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此,引入了基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。1. 感知机...
分类:其他好文   时间:2014-11-03 14:26:40    阅读次数:270
机器学习算法:朴素贝叶斯
朴素贝叶斯(NaiveBayesian)算法的核心思想是:分别计算给定样本属于每个分类的概率,然后挑选概率最高的作为猜测结果。假定样本有2个特征x和y,则其属于分类1的概率记作p(C1|x,y),它的值无法直接分析训练样本得出,需要利用公式间接求得。其中p(Ci)表示训练样本中分类为Ci的..
分类:编程语言   时间:2014-11-03 10:22:12    阅读次数:246
机器学习之逻辑回归(Logistic Regression)
1. Classification 这篇文章我们来讨论分类问题(classification problems),也就是说你想预测的变量 y 是一个离散的值。我们会使用逻辑回归算法来解决分类问题。 之前的文章中,我们讨论的垃圾邮件分类实际上就是一个分类问题。类似的例子还有很多,例如一个在线交易网站判...
分类:其他好文   时间:2014-11-02 23:44:56    阅读次数:474
Learning To Rank之LambdaMART的前世今生
LambdaMART是Learning To Rank的其中一个算法,适用于许多排序场景。它是微软Chris Burges大神的成果,最近几年非常火,屡次现身于各种机器学习大赛中,Yahoo! Learning to Rank Challenge比赛中夺冠队伍用的就是这个模型,据说Bing和Facebook使用的也是这个模型。 本文先简单介绍LambdaMART模型的组成部分,然后介绍与该模型相关的其他几个模型:RankNet、LambdaRank,接着重点介绍LambdaMART的原理,然后介绍Lambd...
分类:其他好文   时间:2014-11-02 18:14:11    阅读次数:450
机器学习实战笔记5(logistic回归)
1:简单概念描写叙述如果如今有一些数据点,我们用一条直线对这些点进行拟合(改线称为最佳拟合直线),这个拟合过程就称为回归。训练分类器就是为了寻找最佳拟合參数,使用的是最优化算法。基于sigmoid函数分类:logistic回归想要的函数可以接受全部的输入然后预測出类别。这个函数就是sigmoid函数...
分类:其他好文   时间:2014-11-02 16:28:04    阅读次数:263
机器学习实战笔记-1基础
机器学习实战笔记基础篇...
分类:其他好文   时间:2014-11-02 00:41:50    阅读次数:236
机器学习中有关概率论知识的小结
一、引言最近写了许多关于机器学习的学习笔记,里面经常涉及概率论的知识,这里对所有概率论知识做一个总结和复习,方便自己查阅,与广大博友共享,所谓磨刀不误砍柴工,希望博友们在这篇博文的帮助下,阅读机器学习的相关文献时能够更加得心应手!这里只对本人觉得经常用到的概率论知识点做一次小结,主要是基本概念,因为...
分类:其他好文   时间:2014-11-01 21:41:26    阅读次数:190
BP网络的代码分析
去年在学习Stanford的ML课程的时候整理过一篇BP神经网络原理的解析,链接地址,不过没有对它的code实现作太多的解读,只是用MATLAB的工具箱做了实验。 Jeremy Lin 具体的原理性资料可以参考: [1] BP神经网络解析 http://blog.csdn.net/linj_m/article/details/9897839 [2] Tom M.Mitchell 机器学习教...
分类:其他好文   时间:2014-11-01 19:17:29    阅读次数:420
Mahout推荐算法API详解【一起学Mahout】
阅读导读: 1.mahout单机内存算法实现和分布式算法实现分别存在哪些问题? 2.算法评判标准有哪些? 3.什么会影响算法的评分? 1. Mahout推荐算法介绍 Mahout推荐算法,从数据处理能力上,可以划分为2类: 单机内存算法实现 基于Hadoop的分步式算法实现 1). 单机内存算法实现   单机内存算法实现:就是在单机...
分类:编程语言   时间:2014-11-01 17:53:30    阅读次数:397
机器学习--判别式模型与生成式模型
一、引言 本材料参考Andrew Ng大神的机器学习课程http://cs229.stanford.edu 在上一篇有监督学习回归模型中,我们利用训练集直接对条件概率p(y|x;θ)建模,例如logistic回归就利用hθ(x) = g(θTx)对p(y|x;θ)建模(其中g(z)是sigmoi.....
分类:其他好文   时间:2014-11-01 17:46:57    阅读次数:202
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!