标签:
p0Num, p1Num = zeros(numWords), zeros(numWords)p0Denom, p1Denom = 0.0, 0.0
p0Num, p1Num = ones(numWords), ones(numWords)p0Denom, p1Denom = 2.0, 2.0
p1Vect = p1Num / p1Denomp0Vect = p0Num / p0Denom
p1Vect = log(p1Num / p1Denom)p0Vect = log(p0Num / p0Denom)
# -*- coding:utf-8 -*-from numpy import *def loadDataSet():postingList = [[‘my‘, ‘dog‘, ‘has‘, ‘flea‘, ‘problems‘, ‘help‘, ‘please‘],[‘maybe‘, ‘not‘, ‘take‘, ‘him‘, ‘to‘, ‘dog‘, ‘park‘, ‘stupid‘],[‘my‘, ‘dalmation‘, ‘is‘, ‘so‘, ‘cute‘, ‘I‘, ‘love‘, ‘him‘],[‘stop‘, ‘posting‘, ‘stupid‘, ‘worthless‘, ‘garbage‘],[‘mr‘, ‘licks‘, ‘ate‘, ‘my‘, ‘steak‘, ‘how‘, ‘to‘, ‘stop‘, ‘him‘],[‘quit‘, ‘buying‘, ‘worthless‘, ‘dog‘, ‘food‘, ‘stupid‘]]classVec = [0, 1, 0, 1, 0, 1] # 1 is abusive, 0 notreturn postingList, classVec# 创建一个在所有文档中出现的不重复词的列表def createVocabList(dataSet):vocabSet = set([])for document in dataSet:vocabSet = vocabSet | set(document)return list(vocabSet)# 输入词汇列表和某个文档,输出文档向量,向量的每一元素为1或0,分别表示词汇表中的单词在输入文档中是否出现。def setOfWords2Vec(vocabList, inputSet):returnVec = [0] * len(vocabList)for word in inputSet:if word in vocabList:returnVec[vocabList.index(word)] = 1else:print "the word: %s is not in my Vocabulary!" % wordreturn returnVec# 基于文档词袋模型改进后的模型def bagOfWords2VecMN(vocabList, inputSet):returnVec = [0] * len(vocabList)for word in inputSet:if word in vocabList:returnVec[vocabList.index(word)] += 1return returnVec# 输入参数为文档矩阵trainMatrix,以及由每篇文档类别标签所构成的向量trainCategorydef trainNB0(trainMatrix, trainCategory):numTrainDocs = len(trainMatrix)numWords = len(trainMatrix[0])pAbusive = sum(trainCategory) / float(numTrainDocs) # 2分类问题,仅0,1构成向量,此处计算1p0Num, p1Num = ones(numWords), ones(numWords)p0Denom, p1Denom = 2.0, 2.0for i in range(numTrainDocs):if trainCategory[i] == 1:p1Num += trainMatrix[i]p1Denom += sum(trainMatrix[i])else:p0Num += trainMatrix[i]p0Denom += sum(trainMatrix[i])p1Vect = log(p1Num / p1Denom)p0Vect = log(p0Num / p0Denom)return p0Vect, p1Vect, pAbusive# 要分类的向量vec2Classifydef classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):p1 = sum(vec2Classify * p1Vec) + log(pClass1)p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)if p1 > p0:return 1else:return 0def testingNB():listOPosts, listClasses = loadDataSet()myVocabList = createVocabList(listOPosts)trainMat = []for postinDoc in listOPosts:trainMat.append(setOfWords2Vec(myVocabList, postinDoc))p0V, p1V, pAb = trainNB0(array(trainMat), array(listClasses))testEntry = [‘love‘, ‘my‘, ‘dalmation‘]thisDoc = array(setOfWords2Vec(myVocabList, testEntry))print testEntry, ‘classified as: ‘, classifyNB(thisDoc, p0V, p1V, pAb)testEntry = [‘stupid‘, ‘garbage‘]thisDoc = array(setOfWords2Vec(myVocabList, testEntry))print testEntry, ‘classified as: ‘, classifyNB(thisDoc, p0V, p1V, pAb)# 文件解析及完整的垃圾邮件测试函数def textParse(bigString):import relistOfTokens = re.split(r‘\W*‘, bigString)return [tok.lower() for tok in listOfTokens if len(tok) > 2]def spamTest():import random# 导入并解析文本文件docList, classList, fullText = [], [], []for i in range(1, 26):wordList = textParse(open(‘email/spam/%d.txt‘ % i, ‘r‘).read())docList.append(wordList)fullText.extend(wordList)classList.append(1)wordList = textParse(open(‘email/ham/%d.txt‘ % i, ‘r‘).read())docList.append(wordList)fullText.extend(wordList)classList.append(0)vocabList = createVocabList(docList)trainingSet = range(50)testSet = []# 随机构建训练集(训练集40个,测试集10个)for i in range(10):randIndex = int(random.uniform(0, len(trainingSet)))testSet.append(trainingSet[randIndex])del(trainingSet[randIndex])trainMat, trainClasses = [], []for docIndex in trainingSet:trainMat.append(setOfWords2Vec(vocabList, docList[docIndex]))trainClasses.append(classList[docIndex])p0V, p1V, pSpam = trainNB0(array(trainMat), array(trainClasses))# 对测试集分类errorCount = 0for docIndex in testSet:wordVector = setOfWords2Vec(vocabList, docList[docIndex])if classifyNB(array(wordVector), p0V, p1V, pSpam) != classList[docIndex]:errorCount += 1print ‘the error rate is: ‘, float(errorCount) / len(testSet)
朴素贝叶斯-Machine Learining In Action学习笔记
标签:
原文地址:http://www.cnblogs.com/woaielf/p/5441660.html