标签:
不管是快速分配还是慢速分配,实际分配内存的都是 buffered_rmqueue()函数,其他的都是在选择从哪个地方来分配比较合适;
还是先来说说各个参数:
struct zone *preferred_zone 表示分配所能接受的最大zone类型
struct zone *zone 表示就在该zone上分配内存;
int order 表示分配页的阶数
gfp_t gfp_flags 分配的标识
page = buffered_rmqueue(preferred_zone, zone, order,
gfp_mask, migratetype);
/*
* Really, prep_compound_page() should be called from __rmqueue_bulk(). But
* we cheat by calling it from here, in the order > 0 path. Saves a branch
* or two.
*/
static inline
struct page *buffered_rmqueue(struct zone *preferred_zone,
struct zone *zone, int order, gfp_t gfp_flags,
int migratetype)
{
unsigned long flags;
struct page *page;
int cold = !!(gfp_flags & __GFP_COLD);//是否指定冷热页
again:
if (likely(order == 0)) {//分配单页
struct per_cpu_pages *pcp;
struct list_head *list;
local_irq_save(flags);//禁止本地CPU中断,禁止前先保存中断状态
pcp = &this_cpu_ptr(zone->pageset)->pcp;//获取到cpu高速缓存页
list = &pcp->lists[migratetype];//根据迁移类型,得到高速缓存区的freelist
if (list_empty(list)) {//空的,高速缓存没有数据;这可能是上次获取的cpu高速缓存迁移类型和这次不一样
pcp->count += rmqueue_bulk(zone, 0,
pcp->batch, list,
migratetype, cold);//该函数向高速缓存中添加内存页,具体分析见文章后面
if (unlikely(list_empty(list)))
goto failed;
}
if (cold)
page = list_entry(list->prev, struct page, lru);
else
page = list_entry(list->next, struct page, lru);
list_del(&page->lru);
pcp->count--;
} else {
if (unlikely(gfp_flags & __GFP_NOFAIL)) {
/*
* __GFP_NOFAIL is not to be used in new code.
*
* All __GFP_NOFAIL callers should be fixed so that they
* properly detect and handle allocation failures.
*
* We most definitely don't want callers attempting to
* allocate greater than order-1 page units with
* __GFP_NOFAIL.
*/
WARN_ON_ONCE(order > 1);
}
spin_lock_irqsave(&zone->lock, flags);
page = __rmqueue(zone, order, migratetype);
spin_unlock(&zone->lock);
if (!page)
goto failed;
__mod_zone_freepage_state(zone, -(1 << order),
get_pageblock_migratetype(page));
}
__count_zone_vm_events(PGALLOC, zone, 1 << order);
zone_statistics(preferred_zone, zone, gfp_flags);
local_irq_restore(flags);
VM_BUG_ON(bad_range(zone, page));
if (prep_new_page(page, order, gfp_flags))
goto again;
return page;
failed:
local_irq_restore(flags);
return NULL;
}struct zone结构体中有个 struct per_cpu_pageset __percpu *pageset; 成员,该成员用于冷热分配器,热页表示已经在cpu的高速缓存中了;
struct per_cpu_pageset {
struct per_cpu_pages pcp;
#ifdef CONFIG_NUMA
s8 expire;
#endif
#ifdef CONFIG_SMP
s8 stat_threshold;
s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
#endif
};
cpu缓存页数组
struct per_cpu_pages {
int count; /* number of pages in the list */列表中页数
int high; /* high watermark, emptying needed */列表页数的上限
int batch; /* chunk size for buddy add/remove */添加和删除页时,一次操作多少页。不是单页删除和填充的,而是以该单位页来操作的
/* Lists of pages, one per migrate type stored on the pcp-lists */
struct list_head lists[MIGRATE_PCPTYPES];//迁移类型的链表
};
从伙伴系统中得到页,然后填充到cpu的高速缓存中
/*
* Obtain a specified number of elements from the buddy allocator, all under
* a single hold of the lock, for efficiency. Add them to the supplied list.
* Returns the number of new pages which were placed at *list.
*/
static int rmqueue_bulk(struct zone *zone, unsigned int order,
unsigned long count, struct list_head *list,
int migratetype, int cold)
{
int mt = migratetype, i;
spin_lock(&zone->lock);
for (i = 0; i < count; ++i) {//一个页面一个页面处理,
struct page *page = __rmqueue(zone, order, migratetype);//分配到指定迁移类型的内存页
if (unlikely(page == NULL))
break;
/*
* Split buddy pages returned by expand() are received here
* in physical page order. The page is added to the callers and
* list and the list head then moves forward. From the callers
* perspective, the linked list is ordered by page number in
* some conditions. This is useful for IO devices that can
* merge IO requests if the physical pages are ordered
* properly.
*/
if (likely(cold == 0))
list_add(&page->lru, list);//如果是冷页,则添加到链表头
else
list_add_tail(&page->lru, list);//否则添加链表尾部
if (IS_ENABLED(CONFIG_CMA)) {//条件编译了CONFIG_CMA选项
mt = get_pageblock_migratetype(page);//获取页面的迁移类型
if (!is_migrate_cma(mt) && !is_migrate_isolate(mt))//如果不是MIGRATE_CMA和 MIGRATE_CMA
mt = migratetype;
}
set_freepage_migratetype(page, mt); //设置page的迁移类型
list = &page->lru;//循环链接下一个页
if (is_migrate_cma(mt))//如果是MIGRATE_CMA迁移类型
__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
-(1 << order));//修改cma迁移类型的页面计数
}
__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));//修改空闲页面的计数
spin_unlock(&zone->lock);
return i;//返回添加到cpu高速缓存链表的页面个数
}
修改对应类型的页面计数
static inline void __mod_zone_page_state(struct zone *zone,
enum zone_stat_item item, int delta)
{
zone_page_state_add(delta, zone, item);
}
static inline void zone_page_state_add(long x, struct zone *zone,
enum zone_stat_item item)
{
atomic_long_add(x, &zone->vm_stat[item]);
atomic_long_add(x, &vm_stat[item]);
}
/*
* Do the hard work of removing an element from the buddy allocator.
* Call me with the zone->lock already held.
*/
static struct page *__rmqueue(struct zone *zone, unsigned int order,
int migratetype)
{
struct page *page;
retry_reserve:
page = __rmqueue_smallest(zone, order, migratetype);//常规情况下,从zone上分配指定的迁移类型的内存页
if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {//上面没有分配到内存页,并且不是紧急的迁移类型
page = __rmqueue_fallback(zone, order, migratetype);//修改搬迁其他迁移类型的页,
/*
* Use MIGRATE_RESERVE rather than fail an allocation. goto
* is used because __rmqueue_smallest is an inline function
* and we want just one call site
*/
if (!page) {//没有成功,则把迁移类型调整为 MIGRATE_RESERVE表示是紧急分配
migratetype = MIGRATE_RESERVE;
goto retry_reserve;//重试
}
}
trace_mm_page_alloc_zone_locked(page, order, migratetype);
return page;
}
/*
* Go through the free lists for the given migratetype and remove
* the smallest available page from the freelists
*/
static inline
struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
int migratetype)
{
unsigned int current_order;
struct free_area * area;
struct page *page;
/* Find a page of the appropriate size in the preferred list */
for (current_order = order; current_order < MAX_ORDER; ++current_order) {//扫描所有阶的内存
area = &(zone->free_area[current_order]);
if (list_empty(&area->free_list[migratetype]))//查看下迁移类型下的链表是否为空
continue;
//获取到链表中的页
page = list_entry(area->free_list[migratetype].next,
struct page, lru);
list_del(&page->lru);
rmv_page_order(page);//设置属性,清除buddy标识,也就是设置 page->_mapcount = -1
area->nr_free--;//从这里可以看出,nr_free是表示该阶下的页块的数目,而不是页的个数
expand(zone, page, order, current_order, area, migratetype);//这是把从高阶分配的页,逐渐对半分给下一阶,直到自己需要的
return page;
}
return NULL;
}这是buddy的一个重要函数:在高阶分配得到内存块时,比如 8阶分配得到内存块时。而我们需要的是低价的,比如 6;那么就要调用下面该函数,把8阶分配得到的内存块,挂到7阶上,然后从该内存块上截取一半,再到6阶上,这时候再比较发现正是我们需要分配的内存阶,就直接返回了;
说下参数:
struct zone *zone:所有的操作都在该zone上完成
struct page *page:高阶上分配得到的页块
int low:我们需要的内存阶
int high:在该阶上分配到的内存
struct free_area *area:这是zone上的高阶空闲页数组项
int migratetype:迁移类型
/*
* The order of subdivision here is critical for the IO subsystem.
* Please do not alter this order without good reasons and regression
* testing. Specifically, as large blocks of memory are subdivided,
* the order in which smaller blocks are delivered depends on the order
* they're subdivided in this function. This is the primary factor
* influencing the order in which pages are delivered to the IO
* subsystem according to empirical testing, and this is also justified
* by considering the behavior of a buddy system containing a single
* large block of memory acted on by a series of small allocations.
* This behavior is a critical factor in sglist merging's success.
*
* -- nyc
*/
static inline void expand(struct zone *zone, struct page *page,
int low, int high, struct free_area *area,
int migratetype)
{
unsigned long size = 1 << high;
while (high > low) {//如果在同阶上分配得到了内存页就不需要执行该函数了
area--;//从高阶空闲数组元素,递减到下一个阶的空闲数组元素
high--;//下一个阶
size >>= 1;//内存大小的一半
VM_BUG_ON(bad_range(zone, &page[size]));
#ifdef CONFIG_DEBUG_PAGEALLOC
if (high < debug_guardpage_minorder()) {
/*
* Mark as guard pages (or page), that will allow to
* merge back to allocator when buddy will be freed.
* Corresponding page table entries will not be touched,
* pages will stay not present in virtual address space
*/
INIT_LIST_HEAD(&page[size].lru);
set_page_guard_flag(&page[size]);
set_page_private(&page[size], high);
/* Guard pages are not available for any usage */
__mod_zone_freepage_state(zone, -(1 << high),
migratetype);
continue;
}
#endif
list_add(&page[size].lru, &area->free_list[migratetype]);//挂入该阶的对应迁移类型下的链表中
area->nr_free++;//该阶上的内存块增加
set_page_order(&page[size], high);//设置private为高阶,清除掉buddy标识,因为该页已经不是伙伴系统的页了
}
}跑到这个函数时,表明上面指定迁移类型从伙伴系统中分配内存失败,所以要用备用迁移列表;
/*
* This array describes the order lists are fallen back to when
* the free lists for the desirable migrate type are depleted
*/
static int fallbacks[MIGRATE_TYPES][4] = {
[MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
#ifdef CONFIG_CMA
[MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
[MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */
#else
[MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
#endif
[MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */
#ifdef CONFIG_MEMORY_ISOLATION
[MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */
#endif
};/* Remove an element from the buddy allocator from the fallback list */
static inline struct page *
__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
{
struct free_area * area;
int current_order;
struct page *page;
int migratetype, i;
/* Find the largest possible block of pages in the other list */
for (current_order = MAX_ORDER-1; current_order >= order;
--current_order) {//这是和指定迁移类型的遍历不一样,这里是从最大阶开始遍历,就是为了防止内存碎片
for (i = 0;; i++) {
migratetype = fallbacks[start_migratetype][i];
/* MIGRATE_RESERVE handled later if necessary */
if (migratetype == MIGRATE_RESERVE)//这是最后的选择,现在还不到时候
break;
area = &(zone->free_area[current_order]);//得到高阶空闲数组元素
if (list_empty(&area->free_list[migratetype]))//如果对应阶上的对应迁移类型的空闲页链表是空的,则循环找备用迁移类型的空闲链表
continue;
page = list_entry(area->free_list[migratetype].next,
struct page, lru);//如果找到了空闲页块,则当前阶上的空闲页块递减
area->nr_free--;
/*
* If breaking a large block of pages, move all free
* pages to the preferred allocation list. If falling
* back for a reclaimable kernel allocation, be more
* aggressive about taking ownership of free pages
*
* On the other hand, never change migration
* type of MIGRATE_CMA pageblocks nor move CMA
* pages on different free lists. We don't
* want unmovable pages to be allocated from
* MIGRATE_CMA areas.
*///下面是解决剩余的空闲页,上面的注释说的很清楚了
//解释下几个有关迁移类型的全局变量,pageblock_order 表示内核认为是大的分配阶(看自己配置,一般会配置MAX_ORDER - 1);pageblock_nr_pages 大分配阶对应的页数
if (!is_migrate_cma(migratetype) &&//不是CMA区域
(unlikely(current_order >= pageblock_order / 2) || //大内存块,则全部转到start_migratetype类型下
start_migratetype == MIGRATE_RECLAIMABLE || //可回收内存页,就迁移类型转换时,会更加积极
page_group_by_mobility_disabled)) {
int pages;
pages = move_freepages_block(zone, page,
start_migratetype);//把这些页面转换到 start_migratetype 迁移类型下面去
/* Claim the whole block if over half of it is free */
if (pages >= (1 << (pageblock_order-1)) ||
page_group_by_mobility_disabled)
set_pageblock_migratetype(page,
start_migratetype);//这里是设置整个页块的迁移类型,上面move_freepage_block()函数是设置每个页的迁移类型
migratetype = start_migratetype;
}
/* Remove the page from the freelists */
list_del(&page->lru);
rmv_page_order(page);//清除buddy的标识,标识该page将不是buddy系统的了
/* Take ownership for orders >= pageblock_order */
if (current_order >= pageblock_order &&
!is_migrate_cma(migratetype))
change_pageblock_range(page, current_order,
start_migratetype);//这个函数是把剩下的其他pageblock块都设置成start_migratetype类型
expand(zone, page, order, current_order, area,
is_migrate_cma(migratetype)
? migratetype : start_migratetype);//瓜分大伙伴页块,分成小伙伴页块
trace_mm_page_alloc_extfrag(page, order, current_order,
start_migratetype, migratetype);
return page;
}
}
return NULL;
}
int move_freepages_block(struct zone *zone, struct page *page,
int migratetype)
{
unsigned long start_pfn, end_pfn;
struct page *start_page, *end_page;
start_pfn = page_to_pfn(page);//页帧号
start_pfn = start_pfn & ~(pageblock_nr_pages-1);//pageblock_nr_pages是迁移类型认为大阶所对应的页数
start_page = pfn_to_page(start_pfn);
end_page = start_page + pageblock_nr_pages - 1;//准备迁移pgeblock_nr_pages个页面,一般要转换迁移类型的话,就转换pageblock_nr_pages个连续页面,这样会减少内存碎片
end_pfn = start_pfn + pageblock_nr_pages - 1;
/* Do not cross zone boundaries */
if (!zone_spans_pfn(zone, start_pfn))
start_page = page;
if (!zone_spans_pfn(zone, end_pfn))//判断要迁移的内存区是否在一个zone上,不能交错zone
return 0;
return move_freepages(zone, start_page, end_page, migratetype);//把要转换迁移类型的内存页面地址范围给move_freepages()进行转换
}/*
* Move the free pages in a range to the free lists of the requested type.
* Note that start_page and end_pages are not aligned on a pageblock
* boundary. If alignment is required, use move_freepages_block()
*///对注释有点不理解??前一个调用函数明明做了pageblock_nr_pages 对齐处理的,而这里却说不必对齐??????????
int move_freepages(struct zone *zone,
struct page *start_page, struct page *end_page,
int migratetype)
{
struct page *page;
unsigned long order;
int pages_moved = 0;
#ifndef CONFIG_HOLES_IN_ZONE
/*
* page_zone is not safe to call in this context when
* CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
* anyway as we check zone boundaries in move_freepages_block().
* Remove at a later date when no bug reports exist related to
* grouping pages by mobility
*/
BUG_ON(page_zone(start_page) != page_zone(end_page));
#endif
for (page = start_page; page <= end_page;) {
/* Make sure we are not inadvertently changing nodes */
VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
if (!pfn_valid_within(page_to_pfn(page))) {
page++;
continue;
}
if (!PageBuddy(page)) {//现在页还是伙伴系统的
page++;
continue;
}
order = page_order(page);//得到阶
list_move(&page->lru,
&zone->free_area[order].free_list[migratetype]);//把这些页搬迁到指定迁移类型对应的链表上
set_freepage_migratetype(page, migratetype);//设置这些页的迁移类型,page->index = migratetype
page += 1 << order;//一下子就转换了 2^order 个页面
pages_moved += 1 << order;
}
return pages_moved;//把范围内的页都迁移完,返回实际迁移了多少页
}static void change_pageblock_range(struct page *pageblock_page,
int start_order, int migratetype)
{
int nr_pageblocks = 1 << (start_order - pageblock_order);//得到有多少个pageblock_order的页块
while (nr_pageblocks--) {//循环设置每个pageblock_order页块
set_pageblock_migratetype(pageblock_page, migratetype);//设置页块的迁移类型
pageblock_page += pageblock_nr_pages;//调整到下一个页块的地址上去
}
}
linux内存管理--实际分配函数 buffered_rmqueue
标签:
原文地址:http://blog.csdn.net/yuzhihui_no1/article/details/50793634