标签:bag-of-words 数据挖掘 机器学习 自然语言处理
import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.UnsupportedEncodingException;
import java.util.StringTokenizer;
public class BowModel
{
Dict dict;
DocFeatureFactory dff;
public BowModel(String path) throws Throwable
{
dict = new Dict();
dict.loadFromLocalFile(path);
dff = new DocFeatureFactory(dict.getWord2Index());
}
double[][] featureTable;
private void generateFeature(String docsFile,int docNum) throws IOException
{
featureTable = new double[docNum][];
int docIndex=0;
File file = new File(docsFile);
BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(file),"utf-8"));
while(true)
{
String line=br.readLine();
if(line == null)
break;
featureTable[docIndex++] = dff.getFeature(line);
}
br.close();
}
private void nomalizeFeature()
{
double sum=0;
double var =0;
for(int col=0;col<featureTable[0].length;col++)//一列代表一个维度
{
sum =0;
for(int row=0;row<featureTable.length;row++)
{
sum+= featureTable[row][col];
}
sum/=featureTable.length;//均值
var =0;
for(int row=0;row<featureTable.length;row++)
{
var+= (featureTable[row][col]-sum)*(featureTable[row][col]-sum);
}
var = Math.sqrt(var/featureTable.length);//标准差
if(var == 0) continue;
for(int row=0;row<featureTable.length;row++)
{
featureTable[row][col] = (featureTable[row][col] -sum)/var;
}
}
}
private void saveFeature(String path,String label) throws IOException
{
File file=new File(path);
BufferedWriter br= new BufferedWriter(new OutputStreamWriter(new FileOutputStream(file)));
for(int i=0;i<featureTable.length;i++)
{
br.append(label+" ");
for(int j=0;j<featureTable[0].length;j++)
{
br.append(Integer.toString(j+1)+":"+featureTable[i][j]+" ");
}
br.append("\n");
}
br.close();
}
public void train() throws IOException
{
generateFeature("/media/linger/G/sources/comment/test/good",340);
nomalizeFeature();
saveFeature("svm_good","1");
generateFeature("/media/linger/G/sources/comment/test/bad",314);
nomalizeFeature();
saveFeature("svm_bad","-1");
}
public static void main(String[] args) throws Throwable
{
// TODO Auto-generated method stub
BowModel bm = new BowModel("/media/linger/G/sources/comment/test/dict");
bm.train();
}
}
import java.io.BufferedReader;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.UnsupportedEncodingException;
import java.util.HashMap;
import java.util.HashSet;
import java.util.Hashtable;
import java.util.StringTokenizer;
public class Dict
{
HashMap<String,Integer> word2Index =null;
Hashtable<String,Integer> word2Count = null;
void loadFromLocalFile(String path) throws IOException
{
word2Index = new HashMap<String,Integer>();
word2Count = new Hashtable<String,Integer>();
int index = 0;
File file = new File(path);
BufferedReader br = new BufferedReader(new InputStreamReader(new FileInputStream(file),"utf-8"));
while(true)
{
String line=br.readLine();
if(line == null)
break;
StringTokenizer tokenizer=new StringTokenizer(line," ");
while(tokenizer.hasMoreElements())
{
String term=tokenizer.nextToken();
if(word2Count.containsKey(term))
{
int freq=word2Count.get(term)+1;
word2Count.put(term, freq);
}
else
{
word2Count.put(term, 1);
word2Index.put(term, index++);
}
}
}
br.close();
}
public HashMap<String,Integer> getWord2Index() throws Throwable
{
if(word2Index==null)
throw new Exception("has not loaded file!");
return word2Index;
}
public static void main(String[] args)
{
// TODO Auto-generated method stub
}
}
import java.util.HashMap;
import java.util.StringTokenizer;
public class DocFeatureFactory
{
HashMap<String,Integer> word2Index;
double[] feature;
int dim;
public DocFeatureFactory(HashMap<String,Integer> w2i)
{
word2Index = w2i;
dim = w2i.size();
}
double[] getFeature(String doc)
{
feature = new double[dim];
StringTokenizer tokenizer=new StringTokenizer(doc," ");
while(tokenizer.hasMoreElements())
{
String term =tokenizer.nextToken();
feature[word2Index.get(term)]++;
}
return feature;
}
public static void main(String[] args)
{
// TODO Auto-generated method stub
}
}
bag-of-words model的java实现,布布扣,bubuko.com
标签:bag-of-words 数据挖掘 机器学习 自然语言处理
原文地址:http://blog.csdn.net/lingerlanlan/article/details/38333687