标签:
作业内容翻译:@胡杨(superhy199148@hotmail.com) && @胥可(feitongxiaoke@gmail.com)  
解答与编排:寒小阳 && 龙心尘 
时间:2016年6月  
出处:http://blog.csdn.net/han_xiaoyang/article/details/51760923
说明:本文为斯坦福大学CS224d课程的中文版内容笔记,已得到斯坦福大学课程@Richard Socher教授的授权翻译与发表
前面一个接一个的Lecture,看得老衲自己也是一脸懵逼,不过你以为你做一个安安静静的美男子(总感觉有勇气做deep learning的女生也是一条汉纸)就能在Stanford这样的学校顺利毕业啦?图样图森破,除掉极高的内容学习梯度,这种顶尖大学的作业和考试一样会让你突(tong)飞(bu)猛(yu)进(sheng)。
说起来,怎么也是堂堂斯坦福的课,这种最看重前言研究在实际工业应用的学校,一定是理论和应用并进,对动手能力要求极强的,于是乎,我们把作业和小测验(MD你这也敢叫小测验!!)也扒过来,整理整理,让大家都来体验体验。反正博主君自己每次折腾完这些大学的assignment之后,都会感慨一句,“还好不生在水生火热的万恶资本主义国家,才能让我大学和研究僧顺利毕业(什么?phd?呵呵…博主是渣渣,智商常年处于欠费状态,我就不参与你们高端人士的趴体了)”。
不能再BB了,直接开始做作业考试吧…
(part a) (5分)  
证明针对任何输入向量
其中
提示:在实际应用中,经常会用到这个性质。为了稳定地计算softmax概率,我们会选择
博主:熬过了高中,居然又看见证明了,也是惊(ri)喜(le)万(gou)分(le),答案拿来!!!
解答:
证明,针对所有维度
(part b) (5 分)  
已知一个N行d列的输入矩阵,计算每一行的softmax概率。在q1_softmax.py中写出你的实现过程,并使用python q1_softmax.py执行。
要求:你所写的代码应该尽可能的有效并以向量化的形式来实现。非向量化的实现将不会得到满分。
博主:简直要哭晕在厕所了,当年毕业设计也是加论文一星期都可以写完的节奏,这里一个5分的作业,还这么多要求…社会主义好…答案拿来!!!
import numpy as np
def softmax(x):
    """
        Softmax 函数
    """
    assert len(x.shape) > 1, "Softmax的得分向量要求维度高于1"
    x -= np.max(x, axis=1, keepdims=True)
    x = np.exp(x) / np.sum(np.exp(x), axis=1, keepdims=True)
    return x
(part a) (3 分) 
推导sigmoid函数的导数,并且只以sigmoid函数值的形式写出来(导数的表达式里只包含
旁白:我年纪轻轻干嘛要走上深度学习这条不归路,真是生无所恋了。
答案:
(part b) (3 分) 
当使用交叉熵损失来作为评价标准时,推导出损失函数以softmax为预测结果的输入向量
其中
答案:
或者等价于下面表达式,其中假设k是正确的类别
(part c) (6 分)  
推导出单隐层神经网络关于输入
 前向传播方程如下:
在编程问题中,我们假设输入向量(隐层变量和输出概率)始终是一个行向量。此处我们约定,当我们说要对向量使用sigmoid函数时,也就是说要对向量每一个元素使用sigmoid函数。
旁白:好好的100分总分,硬要被你这么5分6分地拆,人家5分6分是一道选择题,你特么是一整个毕业设计!!好吧,不哭,跪着也要把题目做完,代码写完。哎,博主还是太年轻,要多学习啊。
答案:令 
(part d) (2 分) 
上面所说的这个神经网络有多少个参数?我们可以假设输入是
旁白:还有part d!!!
答案: 
(part e) (4 分) 在q2_sigmoid.py中补充写出sigmoid激活函数的和求它的梯度的对应代码。并使用python q2_sigmoid.py进行测试,同样的,测试用例有可能不太详尽,因此尽量检查下自己的代码。
旁白:如果博主没有阵亡,就在走向阵亡的路上…
def sigmoid_grad(f):
    """ 
        计算Sigmoid的梯度 
    """
    #好在我有numpy
    f = f * ( 1 - f )
    return f
(part f) (4 分) 
为了方便debugging,我们需要写一个梯度检查器。在q2_gradcheck.py中补充出来,使用python q2_gradcheck.py测试自己的代码。
旁白:做到昏天黑地,睡一觉起来又是一条好汉…
def gradcheck_naive(f, x):
    """ 
        对一个函数f求梯度的梯度检验 
        - f 输入x,然后输出loss和梯度的函数
        - x 就是输入咯
    """ 
    rndstate = random.getstate()
    random.setstate(rndstate)  
    fx, grad = f(x)
    h = 1e-4
    # 遍历x的每一维
    it = np.nditer(x, flags=[‘multi_index‘], op_flags=[‘readwrite‘])
    while not it.finished:
        ix = it.multi_index
        old_val = x[ix]
        x[ix] = old_val - h
        random.setstate(rndstate)
        ( fxh1, _ ) = f(x)
        x[ix] = old_val + h
        random.setstate(rndstate)
        ( fxh2, _ ) = f(x)
        numgrad = (fxh2 - fxh1)/(2*h)
        x[ix] = old_val
        # 比对梯度
        reldiff = abs(numgrad - grad[ix]) / max(1, abs(numgrad), abs(grad[ix]))
        if reldiff > 1e-5:
            print "Gradient check failed."
            print "First gradient error found at index %s" % str(ix)
            print "Your gradient: %f \t Numerical gradient: %f" % (grad[ix], numgrad)
            return
        it.iternext() # Step to next dimension
    print "Gradient check passed!"
(part g) (8 分)  
现在,在q2 neural.py中,写出只有一个隐层且激活函数为sigmoid的神经网络前向和后向传播代码。使用python q2_neural.py测试自己的代码。
旁白:一入DL深似海…
def forward_backward_prop(data, labels, params, verbose = False):
    """ 
        2个隐层的神经网络的前向运算和反向传播
    """
    if len(data.shape) >= 2:
        (N, _) = data.shape
    ### 展开每一层神经网络的参数
    t = 0
    W1 = np.reshape(params[t:t+dimensions[0]*dimensions[1]], (dimensions[0], dimensions[1]))
    t += dimensions[0]*dimensions[1]
    b1 = np.reshape(params[t:t+dimensions[1]], (1, dimensions[1]))
    t += dimensions[1]
    W2 = np.reshape(params[t:t+dimensions[1]*dimensions[2]], (dimensions[1], dimensions[2]))
    t += dimensions[1]*dimensions[2]
    b2 = np.reshape(params[t:t+dimensions[2]], (1, dimensions[2]))
    ### 前向运算
    # 第一个隐层做内积
    a1 = sigmoid(data.dot(W1) + b1)    
    # 第二个隐层做内积
    a2 = softmax(a1.dot(W2) + b2)
    cost = - np.sum(np.log(a2[labels == 1]))/N
    ### 反向传播
    # Calculate analytic gradient for the cross entropy loss function
    grad_a2 = ( a2 - labels ) / N
    # Backpropagate through the second latent layer
    gradW2 = np.dot( a1.T, grad_a2 )
    gradb2 = np.sum( grad_a2, axis=0, keepdims=True )
    # Backpropagate through the first latent layer
    grad_a1 = np.dot( grad_a2, W2.T ) * sigmoid_grad(a1)
    gradW1 = np.dot( data.T, grad_a1 )
    gradb1 = np.sum( grad_a1, axis=0, keepdims=True )
    if verbose: # Verbose mode for logging information
        print "W1 shape: {}".format( str(W1.shape) )
        print "W1 gradient shape: {}".format( str(gradW1.shape) )
        print "b1 shape: {}".format( str(b1.shape) )
        print "b1 gradient shape: {}".format( str(gradb1.shape) )
    ### 梯度拼起来
    grad = np.concatenate((gradW1.flatten(), gradb1.flatten(), gradW2.flatten(), gradb2.flatten()))
    return cost, grad
(part a) (3分) 
假设你得到一个关联到中心词word2vec模型中被找到。 
式中,
提示:问题2中的标记法将有助于此问题的解答。比如:设
其中,
旁边:是的,旁白我已经不知道写什么了,感谢党感谢祖国吧。
解答:设
或者等同于: 
(part b) (3分) 
条件仍然如前一题所描述,求解输出词向量
旁白:我还是安安静静在天朝搬砖吧
解答: 
或者等同于: 
(part c) (6分) 
仍然延续(part a)和(part b),假设我们使用为预测的向量
其中,
当你完成上述操作之后,尝试简要描述这个损失函数比softmax-CE损失函数计算更为有效的原因(你可以给出递增式的学习率,即,给出softmax-CE损失函数的计算时间除以负采样损失函数的计算时间的结果)。
注释:由于我们打算计算目标函数的最小值而不是最大值,这里提到的损失函数与Mikolov等人最先在原版论文中描述的正好相反。
旁白:突然想起来,小时候好焦虑,长大后到底去清华还是去北大,后来发现多虑了。我想如果当初走了狗屎运进了贵T大贵P大,也一定完不成学业。
解答: 
(part d) (8分) 
试得到由skip-gram和CBOW算法分别算出的全部词向量的梯度,前提步骤和词内容集合[wordc-m,…,wordc-1,wordc,wordc+1,…,wordc+m]都已给出,其中,
提示:可以随意使用函数
回忆skip-gram算法,以
其中,
CBOW略有不同,不同于使用
于是,CBOW的损失函数定义为: 
注释:为了符合
旁白:我诚实一点,这个部分真的是烦了课件抄下来的。
解答:为了表达得更为清晰,我们将词库中全部词汇的全部输出向量集合记作
对于skip-gram方法,一个内容窗口的损失梯度为: 
同样地,对于CBOW则有: 
(part e) (12分) 
在这一部分,你将实现word2vec模型,并且使用随机梯度下降方法(SGD)训练属于你自己的词向量。首先,在代码q3_word2vec.py中编写一个辅助函数对矩阵中的每一行进行归一化。同样在这个文件中,完成对softmax、负采样损失函数以及梯度计算函数的实现。然后,完成面向skip-gram的梯度损失函数。当你完成这些的时候,使用命令:python q3_word2vec.py对编写的程序进行测试。 
注释:如果你选择不去实现CBOW(h部分),只需简单地删除对NotImplementedError错误的捕获即可完成你的测试。
旁白:前方高能预警,代码量爆炸了!
import numpy as np
import random
from q1_softmax import softmax
from q2_gradcheck import gradcheck_naive
from q2_sigmoid import sigmoid, sigmoid_grad
def normalizeRows(x):
    """ 
        行归一化函数 
    """
    N = x.shape[0]
    x /= np.sqrt(np.sum(x**2, axis=1)).reshape((N,1)) + 1e-30
    return x
def test_normalize_rows():
    print "Testing normalizeRows..."
    x = normalizeRows(np.array([[3.0,4.0],[1, 2]])) 
    # 结果应该是 [[0.6, 0.8], [0.4472, 0.8944]]
    print x
    assert (np.amax(np.fabs(x - np.array([[0.6,0.8],[0.4472136,0.89442719]]))) <= 1e-6)
    print ""
def softmaxCostAndGradient(predicted, target, outputVectors, dataset):
    """ 
        word2vec的Softmax损失函数 
    """                                                   
    # 输入:                                                         
    # - predicted: 预测词向量的numpy数组
    # - target: 目标词的下标              
    # - outputVectors: 所有token的"output"向量(行形式) 
    # - dataset: 用来做负例采样的,这里其实没用着         
    # 输出:                                                        
    # - cost: 输出的互熵损失    
    # - gradPred: the gradient with respect to the predicted word   
    #        vector                                                
    # - grad: the gradient with respect to all the other word        
    #        vectors                                               
    probabilities = softmax(predicted.dot(outputVectors.T))
    cost = -np.log(probabilities[target])
    delta = probabilities
    delta[target] -= 1
    N = delta.shape[0]
    D = predicted.shape[0]
    grad = delta.reshape((N,1)) * predicted.reshape((1,D))
    gradPred = (delta.reshape((1,N)).dot(outputVectors)).flatten()
    return cost, gradPred, grad
def negSamplingCostAndGradient(predicted, target, outputVectors, dataset, 
    K=10):
    """ 
        Word2vec模型负例采样后的损失函数和梯度
    """
    grad = np.zeros(outputVectors.shape)
    gradPred = np.zeros(predicted.shape)
    indices = [target]
    for k in xrange(K):
        newidx = dataset.sampleTokenIdx()
        while newidx == target:
            newidx = dataset.sampleTokenIdx()
        indices += [newidx]
    labels = np.array([1] + [-1 for k in xrange(K)])
    vecs = outputVectors[indices,:]
    t = sigmoid(vecs.dot(predicted) * labels)
    cost = -np.sum(np.log(t))
    delta = labels * (t - 1)
    gradPred = delta.reshape((1,K+1)).dot(vecs).flatten()
    gradtemp = delta.reshape((K+1,1)).dot(predicted.reshape(
        (1,predicted.shape[0])))
    for k in xrange(K+1):
        grad[indices[k]] += gradtemp[k,:]
     t = sigmoid(predicted.dot(outputVectors[target,:]))
     cost = -np.log(t)
     delta = t - 1
     gradPred += delta * outputVectors[target, :]
     grad[target, :] += delta * predicted
     for k in xrange(K):
         idx = dataset.sampleTokenIdx()
         t = sigmoid(-predicted.dot(outputVectors[idx,:]))
         cost += -np.log(t)
         delta = 1 - t
         gradPred += delta * outputVectors[idx, :]
         grad[idx, :] += delta * predicted
    return cost, gradPred, grad
def skipgram(currentWord, C, contextWords, tokens, inputVectors, outputVectors, 
    dataset, word2vecCostAndGradient = softmaxCostAndGradient):
    """ Skip-gram model in word2vec """
    # skip-gram模型的实现
    # 输入:                                                         
    # - currrentWord: 当前中心词所对应的串           
    # - C: 上下文大小(词窗大小)                          
    # - contextWords: 最多2*C个词                             
    # - tokens: 对应词向量中词下标的字典                
    # - inputVectors: "input" word vectors (as rows) for all tokens           
    # - outputVectors: "output" word vectors (as rows) for all tokens         
    # - word2vecCostAndGradient: the cost and gradient function for a prediction vector given the target word vectors, could be one of the two cost functions you implemented above
    # 输出:                                                   
    # - cost: skip-gram模型算得的损失值   
    # - grad: 词向量对应的梯度 
    currentI = tokens[currentWord]
    predicted = inputVectors[currentI, :]
    cost = 0.0
    gradIn = np.zeros(inputVectors.shape)
    gradOut = np.zeros(outputVectors.shape)
    for cwd in contextWords:
        idx = tokens[cwd]
        cc, gp, gg = word2vecCostAndGradient(predicted, idx, outputVectors, dataset)
        cost += cc
        gradOut += gg
        gradIn[currentI, :] += gp
    return cost, gradIn, gradOut
def word2vec_sgd_wrapper(word2vecModel, tokens, wordVectors, dataset, C, word2vecCostAndGradient = softmaxCostAndGradient):
    batchsize = 50
    cost = 0.0
    grad = np.zeros(wordVectors.shape)
    N = wordVectors.shape[0]
    inputVectors = wordVectors[:N/2,:]
    outputVectors = wordVectors[N/2:,:]
    for i in xrange(batchsize):
        C1 = random.randint(1,C)
        centerword, context = dataset.getRandomContext(C1)
        if word2vecModel == skipgram:
            denom = 1
        else:
            denom = 1
        c, gin, gout = word2vecModel(centerword, C1, context, tokens, inputVectors, outputVectors, dataset, word2vecCostAndGradient)
        cost += c / batchsize / denom
        grad[:N/2, :] += gin / batchsize / denom
        grad[N/2:, :] += gout / batchsize / denom
    return cost, grad
def test_word2vec():
    # Interface to the dataset for negative sampling
    dataset = type(‘dummy‘, (), {})()
    def dummySampleTokenIdx():
        return random.randint(0, 4)
    def getRandomContext(C):
        tokens = ["a", "b", "c", "d", "e"]
        return tokens[random.randint(0,4)], [tokens[random.randint(0,4)]            for i in xrange(2*C)]
    dataset.sampleTokenIdx = dummySampleTokenIdx
    dataset.getRandomContext = getRandomContext
    random.seed(31415)
    np.random.seed(9265)
    dummy_vectors = normalizeRows(np.random.randn(10,3))
    dummy_tokens = dict([("a",0), ("b",1), ("c",2),("d",3),("e",4)])
    print "==== Gradient check for skip-gram ===="
    gradcheck_naive(lambda vec: word2vec_sgd_wrapper(skipgram, dummy_tokens, vec, dataset, 5), dummy_vectors)
    gradcheck_naive(lambda vec: word2vec_sgd_wrapper(skipgram, dummy_tokens, vec, dataset, 5, negSamplingCostAndGradient), dummy_vectors)
    print "\n==== Gradient check for CBOW      ===="
    gradcheck_naive(lambda vec: word2vec_sgd_wrapper(cbow, dummy_tokens, vec, dataset, 5), dummy_vectors)
    gradcheck_naive(lambda vec: word2vec_sgd_wrapper(cbow, dummy_tokens, vec, dataset, 5, negSamplingCostAndGradient), dummy_vectors)
    print "\n=== Results ==="
    print skipgram("c", 3, ["a", "b", "e", "d", "b", "c"], dummy_tokens, dummy_vectors[:5,:], dummy_vectors[5:,:], dataset)
    print skipgram("c", 1, ["a", "b"], dummy_tokens, dummy_vectors[:5,:], dummy_vectors[5:,:], dataset, negSamplingCostAndGradient)
    print cbow("a", 2, ["a", "b", "c", "a"], dummy_tokens, dummy_vectors[:5,:], dummy_vectors[5:,:], dataset)
    print cbow("a", 2, ["a", "b", "a", "c"], dummy_tokens, dummy_vectors[:5,:], dummy_vectors[5:,:], dataset, negSamplingCostAndGradient)
if __name__ == "__main__":
    test_normalize_rows()
    test_word2vec()
(f) (4分) 在代码q3_sgd.py中完成对随即梯度下降优化函数的实现。并且在该代码中运行测试你的实现。
旁白:想到这篇文章有可能会被无数可以智商碾压我的大神看到,就脸一阵发烫。
# 实现随机梯度下降
# 随机梯度下降每1000轮,就保存一下现在训练得到的参数
SAVE_PARAMS_EVERY = 1000
import glob
import os.path as op
import cPickle as pickle
import sys
def load_saved_params():
    """
        载入之前的参数以免从头开始训练
    """
    st = 0
    for f in glob.glob("saved_params_*.npy"):
        iter = int(op.splitext(op.basename(f))[0].split("_")[2])
        if (iter > st):
            st = iter
    if st > 0:
        with open("saved_params_%d.npy" % st, "r") as f:
            params = pickle.load(f)
            state = pickle.load(f)
        return st, params, state
    else:
        return st, None, None
def save_params(iter, params):
    with open("saved_params_%d.npy" % iter, "w") as f:
        pickle.dump(params, f)
        pickle.dump(random.getstate(), f)
def sgd(f, x0, step, iterations, postprocessing = None, useSaved = False, PRINT_EVERY=10, ANNEAL_EVERY = 20000):
    """ 随机梯度下降 """
    ###########################################################
    # 输入
    #   - f: 需要最优化的函数
    #   - x0: SGD的初始值
    #   - step: SGD的步长
    #   - iterations: 总得迭代次数
    #   - postprocessing: 参数后处理(比如word2vec里需要对词向量做归一化处理)
    #   - PRINT_EVERY: 指明多少次迭代以后输出一下状态
    # 输出: 
    #   - x: SGD完成后的输出参数                   #
    ###########################################################
    if useSaved:
        start_iter, oldx, state = load_saved_params()
        if start_iter > 0:
            x0 = oldx;
            step *= 0.5 ** (start_iter / ANNEAL_EVERY)
        if state:
            random.setstate(state)
    else:
        start_iter = 0
    x = x0
    if not postprocessing:
        postprocessing = lambda x: x
    expcost = None
    for iter in xrange(start_iter + 1, iterations + 1):
        cost, grad = f(x)
        x = x - step * grad
        x = postprocessing(x)
        if iter % PRINT_EVERY == 0:
            print "Iter#{}, cost={}".format(iter, cost)
            sys.stdout.flush()
        if iter % SAVE_PARAMS_EVERY == 0 and useSaved:
            save_params(iter, x)
        if iter % ANNEAL_EVERY == 0:
            step *= 0.5
    return x
(part g) (4分) 
开始秀啦!现在我们将要载入真实的数据并使用你已经实现的手段训练词向量!我们将使用Stanford Sentiment Treebank (SST)数据集来进行词向量的训练,之后将他们应用到情感分析任务中去。在这一部分中,无需再编写更多的代码;只需要运行命令python q3 run.py即可。 
注释:训练过程所占用的时间可能会很长,这取决于你所实现的程序的效率(一个拥有优异效率的实现程序大约需要占用1个小时)。努力去接近这个目标! 
当脚本编写完成,需要完成对词向量的可视化显示。相应的结果同样被保存下来,如项目目录中的图片q3 word_vectors.png所示。包括在你作业中绘制的坐标图。简明解释最多三个句子在你的坐标图中的显示状况。 
解答: 
 (part h) 附加题(5分)
在代码q3_word2vec.py中完成对CBOW的实现。注释:这部分内容是可选的,但是在d部分中关于CBOW的梯度推导在这里并不适用!
def cbow(currentWord, C, contextWords, tokens, inputVectors, outputVectors, 
    dataset, word2vecCostAndGradient = softmaxCostAndGradient):
    """
        word2vec的CBOW模型
    """
    cost = 0
    gradIn = np.zeros(inputVectors.shape)
    gradOut = np.zeros(outputVectors.shape)
     D = inputVectors.shape[1]
     predicted = np.zeros((D,))
     indices = [tokens[cwd] for cwd in contextWords]
     for idx in indices:
         predicted += inputVectors[idx, :]
     cost, gp, gradOut = word2vecCostAndGradient(predicted, tokens[currentWord], outputVectors, dataset)
     gradIn = np.zeros(inputVectors.shape)
     for idx in indices:
         gradIn[idx, :] += gp
    return cost, gradIn, gradOut
现在,随着词向量的训练,我们准备展示一个简单的情感分析案例。随着词向量的训练,我们准备展示一个简单的情感分析。对于每条Stanford Sentiment Treebank数据集中的句子,将句子中全体词向量的平均值算作其特征值,并试图预测所提句子中的情感层次。短语的情感层次使用真实数值在原始数据集中表示,并被我们用以下5个类别来表示: 
对其分别进行从0到4的编码。在这一部分,你将学习用SGD来训练一个softmax回归机,并且通过不断地训练/调试验证来提高回归机的泛化能力。 
(part a)(10分) 
实现一个句子的特征生成器和softmax回归机。在代码q4_softmaxreg.py中完成对这个任务的实现,并运行命令python q4_ softmaxreg.py,对刚才完成的功能函数进行调试。
import numpy as np
import random
from cs224d.data_utils import *
from q1_softmax import softmax
from q2_gradcheck import gradcheck_naive
from q3_sgd import load_saved_params
def getSentenceFeature(tokens, wordVectors, sentence):
    """ 
        简单粗暴的处理方式,直接对句子的所有词向量求平均做为情感分析的输入
    """
    # 输入:                                                         
    # - tokens: a dictionary that maps words to their indices in the word vector list                                
    # - wordVectors: word vectors (each row) for all tokens 
    # - sentence: a list of words in the sentence of interest 
    # 输出:                                                         
    # - sentVector: feature vector for the sentence    
    sentVector = np.zeros((wordVectors.shape[1],))
    indices = [tokens[word] for word in sentence]
    sentVector = np.mean(wordVectors[indices, :], axis=0)
    return sentVector
def softmaxRegression(features, labels, weights, regularization = 0.0, nopredictions = False):
    """ Softmax Regression """
    # 完成加正则化的softmax回归        
    # 输入:                                                         
    # - features: feature vectors, each row is a feature vector 
    # - labels: labels corresponding to the feature vectors     
    # - weights: weights of the regressor                       
    # - regularization: L2 regularization constant              
    # 输出:                                                         
    # - cost: cost of the regressor                             
    # - grad: gradient of the regressor cost with respect to its weights                                               
    # - pred: label predictions of the regressor (you might find np.argmax helpful)  
    prob = softmax(features.dot(weights))
    if len(features.shape) > 1:
        N = features.shape[0]
    else:
        N = 1
    # A vectorized implementation of    1/N * sum(cross_entropy(x_i, y_i)) + 1/2*|w|^2
    cost = np.sum(-np.log(prob[range(N), labels])) / N 
    cost += 0.5 * regularization * np.sum(weights ** 2)
    grad = np.array(prob)
    grad[range(N), labels] -= 1.0
    grad = features.T.dot(grad) / N
    grad += regularization * weights
    if N > 1:
        pred = np.argmax(prob, axis=1)
    else:
        pred = np.argmax(prob)
    if nopredictions:
        return cost, grad
    else:
        return cost, grad, pred
def accuracy(y, yhat):
    """ Precision for classifier """
    assert(y.shape == yhat.shape)
    return np.sum(y == yhat) * 100.0 / y.size
def softmax_wrapper(features, labels, weights, regularization = 0.0):
    cost, grad, _ = softmaxRegression(features, labels, weights, 
        regularization)
    return cost, grad
def sanity_check():
    """
    Run python q4_softmaxreg.py.
    """
    random.seed(314159)
    np.random.seed(265)
    dataset = StanfordSentiment()
    tokens = dataset.tokens()
    nWords = len(tokens)
    _, wordVectors0, _ = load_saved_params()
    wordVectors = (wordVectors0[:nWords,:] + wordVectors0[nWords:,:])
    dimVectors = wordVectors.shape[1]
    dummy_weights = 0.1 * np.random.randn(dimVectors, 5)
    dummy_features = np.zeros((10, dimVectors))
    dummy_labels = np.zeros((10,), dtype=np.int32)    
    for i in xrange(10):
        words, dummy_labels[i] = dataset.getRandomTrainSentence()
        dummy_features[i, :] = getSentenceFeature(tokens, wordVectors, words)
    print "==== Gradient check for softmax regression ===="
    gradcheck_naive(lambda weights: softmaxRegression(dummy_features,
        dummy_labels, weights, 1.0, nopredictions = True), dummy_weights)
    print "\n=== Results ==="
    print softmaxRegression(dummy_features, dummy_labels, dummy_weights, 1.0)
if __name__ == "__main__":
    sanity_check()
(part b)(2分) 
解释当分类语料少于三句时为什么要引入正则化(实际上在大多数机器学习任务都这样)。 
解答:为了避免训练集的过拟合以及对未知数据集的适应力不佳现象。
(part c)(4分) 
在q4 sentiment.py中完成超参数的实现代码从而获取“最佳”的惩罚因子。你是如何选择的?报告你的训练、调试和测试精度,在最多一个句子中校正你的超参数选定方法。 注释:在开发中应该获取至少30%的准确率。 
解答:参考值为1e-4,在调试、开发和测试过程中准确率分别为29.1%,31.4%和27.6%
import numpy as np
import matplotlib.pyplot as plt
from cs224d.data_utils import *
from q3_sgd import load_saved_params, sgd
from q4_softmaxreg import softmaxRegression, getSentenceFeature, accuracy, softmax_wrapper
# 试试不同的正则化系数,选最好的
REGULARIZATION = [0.0, 0.00001, 0.00003, 0.0001, 0.0003, 0.001, 0.003, 0.01]
# 载入数据集
dataset = StanfordSentiment()
tokens = dataset.tokens()
nWords = len(tokens)
# 载入预训练好的词向量 
_, wordVectors0, _ = load_saved_params()
wordVectors = (wordVectors0[:nWords,:] + wordVectors0[nWords:,:])
dimVectors = wordVectors.shape[1]
# 载入训练集
trainset = dataset.getTrainSentences()
nTrain = len(trainset)
trainFeatures = np.zeros((nTrain, dimVectors))
trainLabels = np.zeros((nTrain,), dtype=np.int32)
for i in xrange(nTrain):
    words, trainLabels[i] = trainset[i]
    trainFeatures[i, :] = getSentenceFeature(tokens, wordVectors, words)
# 准备好训练集的特征
devset = dataset.getDevSentences()
nDev = len(devset)
devFeatures = np.zeros((nDev, dimVectors))
devLabels = np.zeros((nDev,), dtype=np.int32)
for i in xrange(nDev):
    words, devLabels[i] = devset[i]
    devFeatures[i, :] = getSentenceFeature(tokens, wordVectors, words)
# 尝试不同的正则化系数
results = []
for regularization in REGULARIZATION:
    random.seed(3141)
    np.random.seed(59265)
    weights = np.random.randn(dimVectors, 5)
    print "Training for reg=%f" % regularization 
    # batch optimization
    weights = sgd(lambda weights: softmax_wrapper(trainFeatures, trainLabels, 
        weights, regularization), weights, 3.0, 10000, PRINT_EVERY=100)
    # 训练集上测效果
    _, _, pred = softmaxRegression(trainFeatures, trainLabels, weights)
    trainAccuracy = accuracy(trainLabels, pred)
    print "Train accuracy (%%): %f" % trainAccuracy
    # dev集合上看效果
    _, _, pred = softmaxRegression(devFeatures, devLabels, weights)
    devAccuracy = accuracy(devLabels, pred)
    print "Dev accuracy (%%): %f" % devAccuracy
    # 保存结果权重
    results.append({
        "reg" : regularization, 
        "weights" : weights, 
        "train" : trainAccuracy, 
        "dev" : devAccuracy})
# 输出准确率
print ""
print "=== Recap ==="
print "Reg\t\tTrain\t\tDev"
for result in results:
    print "%E\t%f\t%f" % (
        result["reg"], 
        result["train"], 
        result["dev"])
print ""
# 选最好的正则化系数
BEST_REGULARIZATION = None
BEST_WEIGHTS = None
best_dev = 0
for result in results:
    if result["dev"] > best_dev:
        best_dev = result["dev"]
        BEST_REGULARIZATION = result["reg"]
        BEST_WEIGHTS = result["weights"]
# Test your findings on the test set
testset = dataset.getTestSentences()
nTest = len(testset)
testFeatures = np.zeros((nTest, dimVectors))
testLabels = np.zeros((nTest,), dtype=np.int32)
for i in xrange(nTest):
    words, testLabels[i] = testset[i]
    testFeatures[i, :] = getSentenceFeature(tokens, wordVectors, words)
_, _, pred = softmaxRegression(testFeatures, testLabels, BEST_WEIGHTS)
print "Best regularization value: %E" % BEST_REGULARIZATION
print "Test accuracy (%%): %f" % accuracy(testLabels, pred)
# 画出正则化和准确率的关系
plt.plot(REGULARIZATION, [x["train"] for x in results])
plt.plot(REGULARIZATION, [x["dev"] for x in results])
plt.xscale(‘log‘)
plt.xlabel("regularization")
plt.ylabel("accuracy")
plt.legend([‘train‘, ‘dev‘], loc=‘upper left‘)
plt.savefig("q4_reg_v_acc.png")
plt.show()
(d)(4分)绘出在训练和开发过程中的分类准确率,并在x轴使用对数刻度来对正则化值进行相关设置。这应该自动化的进行。包括在你作业中详细展示的坐标图q4_reg_acc.png。简明解释最多三个句子在此坐标图中的显示情况。 
解答: 
 深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答
标签:
原文地址:http://blog.csdn.net/han_xiaoyang/article/details/51760923