标签:
一、插入排序
①直接插入排序(从后向前找到合适位置后插入)
1、基本思想:每步将一个待排序的记录,按其顺序码大小插入到前面已经排序的字序列的合适位置(从后向前找到合适位置后),直到全部插入排序完为止。
java代码实现:
package com.sort;
public class 直接插入排序 {
    public static void main(String[] args) {
        int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1};
        System.out.println("排序之前:");
        for (int i = 0; i < a.length; i++) {
            System.out.print(a[i]+" ");
        }
        //直接插入排序
        for (int i = 1; i < a.length; i++) {
            //待插入元素
            int temp = a[i];
            int j;
            /*for (j = i-1; j>=0 && a[j]>temp; j--) {
                //将大于temp的往后移动一位
                a[j+1] = a[j];
            }*/
            for (j = i-1; j>=0; j--) {
                //将大于temp的往后移动一位
                if(a[j]>temp){
                    a[j+1] = a[j];
                }else{
                    break;
                }
            }
            a[j+1] = temp;
        }
        System.out.println();
        System.out.println("排序之后:");
        for (int i = 0; i < a.length; i++) {
            System.out.print(a[i]+" ");
        }
    }
}
②二分法插入排序(按二分法找到合适位置插入)
1、基本思想:二分法插入排序的思想和直接插入一样,只是找合适的插入位置的方式不同,这里是按二分法找到合适的位置,可以减少比较的次数。
java代码实现:
package com.sort;
public class 二分插入排序 {
    public static void main(String[] args) {
        int[] a={49,38,65,97,176,213,227,49,78,34,12,164,11,18,1};
        System.out.println("排序之前:");
        for (int i = 0; i < a.length; i++) {
            System.out.print(a[i]+" ");
        }
        //二分插入排序
        sort(a);
        System.out.println();
        System.out.println("排序之后:");
        for (int i = 0; i < a.length; i++) {
            System.out.print(a[i]+" ");
        }
    }
    private static void sort(int[] a) {
        for (int i = 0; i < a.length; i++) {
            int temp = a[i];
            int left = 0;
            int right = i-1;
            int mid = 0;
            while(left<=right){
                mid = (left+right)/2;
                if(temp<a[mid]){
                    right = mid-1;
                }else{
                    left = mid+1;
                }
            }
            for (int j = i-1; j >= left; j--) {
                a[j+1] = a[j];
            }
            if(left != i){
                a[left] = temp;
            }
        }
    }
}
③希尔排序
1、基本思想:先取一个小于n的整数d1作为第一个增量,把文件的全部记录分成d1个组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<…<d2<d1),即所有记录放在同一组中进行直接插入排序为止。该方法实质上是一种分组插入方法。
package com.sort;//不稳定
public class 希尔排序 {public static void main(String[] args) {
int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1};
System.out.println("排序之前:");for (int i = 0; i < a.length; i++) {
System.out.print(a[i]+" ");
}
//希尔排序
int d = a.length;
while(true){
d = d / 2;
for(int x=0;x<d;x++){
for(int i=x+d;i<a.length;i=i+d){
int temp = a[i];
int j;
for(j=i-d;j>=0&&a[j]>temp;j=j-d){
a[j+d] = a[j];
}
a[j+d] = temp;
}
}
if(d == 1){
break;
}
}
System.out.println();
System.out.println("排序之后:");
for (int i = 0; i < a.length; i++) {System.out.print(a[i]+" ");
}
}
}
package com.sort;
//不稳定
public class 简单的选择排序 {
    public static void main(String[] args) {
        int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8};
        System.out.println("排序之前:");
        for (int i = 0; i < a.length; i++) {
            System.out.print(a[i]+" ");
        }
        //简单的选择排序
        for (int i = 0; i < a.length; i++) {
            int min = a[i];
            int n=i; //最小数的索引
            for(int j=i+1;j<a.length;j++){
                if(a[j]<min){  //找出最小的数
                    min = a[j];
                    n = j;
                }
            }
            a[n] = a[i];
            a[i] = min;
            
        }
        System.out.println();
        System.out.println("排序之后:");
        for (int i = 0; i < a.length; i++) {
            System.out.print(a[i]+" ");
        }
    }
}
②堆排序
1、基本思想:
堆排序是一种树形选择排序,是对直接选择排序的有效改进。
堆的定义下:具有n个元素的序列 (h1,h2,...,hn),当且仅当满足(hi>=h2i,hi>=2i+1)或(hi<=h2i,hi<=2i+1) (i=1,2,...,n/2)时称之为堆。在这里只讨论满足前者条件的堆。由堆的定义可以看出,堆顶元素(即第一个元素)必为最大项(大顶堆)。完全二 叉树可以很直观地表示堆的结构。堆顶为根,其它为左子树、右子树。
思想:初始时把要排序的数的序列看作是一棵顺序存储的二叉树,调整它们的存储序,使之成为一个 堆,这时堆的根节点的数最大。然后将根节点与堆的最后一个节点交换。然后对前面(n-1)个数重新调整使之成为堆。依此类推,直到只有两个节点的堆,并对 它们作交换,最后得到有n个节点的有序序列。从算法描述来看,堆排序需要两个过程,一是建立堆,二是堆顶与堆的最后一个元素交换位置。所以堆排序有两个函数组成。一是建堆的渗透函数,二是反复调用渗透函数实现排序的函数。
package com.sort;
三、交换排序
①冒泡排序
1、基本思想:在要排序的一组数中,对当前还未排好序的范围内的全部数,自上而下对相邻的两个数依次进行比较和调整,让较大的数往下沉,较小的往上冒。即:每当两相邻的数比较后发现它们的排序与排序要求相反时,就将它们互换。
package com.sort;
java代价实现:
package com.sort;
//不稳定
public class 快速排序 {
    public static void main(String[] args) {
        int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8};
        System.out.println("排序之前:");
        for (int i = 0; i < a.length; i++) {
            System.out.print(a[i]+" ");
        }
        //快速排序
        quick(a);
        System.out.println();
        System.out.println("排序之后:");
        for (int i = 0; i < a.length; i++) {
            System.out.print(a[i]+" ");
        }
    }
    private static void quick(int[] a) {
        if(a.length>0){
            quickSort(a,0,a.length-1);
        }
    }
    private static void quickSort(int[] a, int low, int high) {
        if(low<high){ //如果不加这个判断递归会无法退出导致堆栈溢出异常
            int middle = getMiddle(a,low,high);
            quickSort(a, 0, middle-1);
            quickSort(a, middle+1, high);
        }
    }
    private static int getMiddle(int[] a, int low, int high) {
        int temp = a[low];//基准元素
        while(low<high){
            //找到比基准元素小的元素位置
            while(low<high && a[high]>=temp){
                high--;
            }
            a[low] = a[high]; 
            while(low<high && a[low]<=temp){
                low++;
            }
            a[high] = a[low];
        }
        a[low] = temp;
        return low;
    }
}
四、归并排序
1、基本思想:归并(Merge)排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待排序序列分为若干个子序列,每个子序列是有序的。然后再把有序子序列合并为整体有序序列。
java代码实现:
package com.sort;
//稳定
public class 归并排序 {
    public static void main(String[] args) {
        int[] a={49,38,65,97,76,13,27,49,78,34,12,64,1,8};
        System.out.println("排序之前:");
        for (int i = 0; i < a.length; i++) {
            System.out.print(a[i]+" ");
        }
        //归并排序
        mergeSort(a,0,a.length-1);
        System.out.println();
        System.out.println("排序之后:");
        for (int i = 0; i < a.length; i++) {
            System.out.print(a[i]+" ");
        }
    }
    private static void mergeSort(int[] a, int left, int right) {
        if(left<right){
            int middle = (left+right)/2;
            //对左边进行递归
            mergeSort(a, left, middle);
            //对右边进行递归
            mergeSort(a, middle+1, right);
            //合并
            merge(a,left,middle,right);
        }
    }
    private static void merge(int[] a, int left, int middle, int right) {
        int[] tmpArr = new int[a.length];
        int mid = middle+1; //右边的起始位置
        int tmp = left;
        int third = left;
        while(left<=middle && mid<=right){
            //从两个数组中选取较小的数放入中间数组
            if(a[left]<=a[mid]){
                tmpArr[third++] = a[left++];
            }else{
                tmpArr[third++] = a[mid++];
            }
        }
        //将剩余的部分放入中间数组
        while(left<=middle){
            tmpArr[third++] = a[left++];
        }
        while(mid<=right){
            tmpArr[third++] = a[mid++];
        }
        //将中间数组复制回原数组
        while(tmp<=right){
            a[tmp] = tmpArr[tmp++];
        }
    }
}
五、基数排序
1、基本思想:将所有待比较数值(正整数)统一为同样的数位长度,数位较短的数前面补零。然后,从最低位开始,依次进行一次排序。这样从最低位排序一直到最高位排序完成以后,数列就变成一个有序序列。
java代码实现:
package com.sort;
import java.util.ArrayList;
import java.util.List;
//稳定
public class 基数排序 {
    public static void main(String[] args) {
        int[] a={49,38,65,97,176,213,227,49,78,34,12,164,11,18,1};
        System.out.println("排序之前:");
        for (int i = 0; i < a.length; i++) {
            System.out.print(a[i]+" ");
        }
        //基数排序
        sort(a);
        System.out.println();
        System.out.println("排序之后:");
        for (int i = 0; i < a.length; i++) {
            System.out.print(a[i]+" ");
        }
    }
    private static void sort(int[] array) {
        //找到最大数,确定要排序几趟
        int max = 0;
        for (int i = 0; i < array.length; i++) {
            if(max<array[i]){
                max = array[i];
            }
        }
        //判断位数
        int times = 0;
        while(max>0){
            max = max/10;
            times++;
        }
        //建立十个队列
        List<ArrayList> queue = new ArrayList<ArrayList>();
        for (int i = 0; i < 10; i++) {
            ArrayList queue1 = new ArrayList();
            queue.add(queue1);
        }
        //进行times次分配和收集
        for (int i = 0; i < times; i++) {
            //分配
            for (int j = 0; j < array.length; j++) {
                int x = array[j]%(int)Math.pow(10, i+1)/(int)Math.pow(10, i);
                ArrayList queue2 = queue.get(x);
                queue2.add(array[j]);
                queue.set(x,queue2);
            }
            //收集
            int count = 0;
            for (int j = 0; j < 10; j++) {
                while(queue.get(j).size()>0){
                    ArrayList<Integer> queue3 = queue.get(j);
                    array[count] = queue3.get(0);
                    queue3.remove(0);
                    count++;
                }
            }
        }
    }
}
总结:
一、稳定性:
稳定:冒泡排序、插入排序、归并排序和基数排序
不稳定:选择排序、快速排序、希尔排序、堆排序
二、平均时间复杂度
O(n^2):直接插入排序,简单选择排序,冒泡排序。
在数据规模较小时(9W内),直接插入排序,简单选择排序差不多。当数据较大时,冒泡排序算法的时间代价最高。性能为O(n^2)的算法基本上是相邻元素进行比较,基本上都是稳定的。
O(nlogn):快速排序,归并排序,希尔排序,堆排序。
其中,快排是最好的, 其次是归并和希尔,堆排序在数据量很大时效果明显。
三、排序算法的选择
1.数据规模较小
(1)待排序列基本序的情况下,可以选择直接插入排序;
(2)对稳定性不作要求宜用简单选择排序,对稳定性有要求宜用插入或冒泡
2.数据规模不是很大
(1)完全可以用内存空间,序列杂乱无序,对稳定性没有要求,快速排序,此时要付出log(N)的额外空间。
(2)序列本身可能有序,对稳定性有要求,空间允许下,宜用归并排序
3.数据规模很大
(1)对稳定性有求,则可考虑归并排序。
(2)对稳定性没要求,宜用堆排序
4.序列初始基本有序(正序),宜用直接插入,冒泡
标签:
原文地址:http://blog.csdn.net/w329300817/article/details/51917455