码迷,mamicode.com
首页 > 编程语言 > 详细

网络流算法与建模总结

时间:2016-12-16 14:18:01      阅读:251      评论:0      收藏:0      [点我收藏+]

标签:htm   memset   cost   name   isp   column   read   替换   color   

【算法】

 

1.最大流

 

(1) 容量限制:对于∀u,v∈V ,要求 f (u,v) ≤ c(u,v)。

 

(2) 反对称性:对于∀u,v∈V ,要求 f (u,v) = − f (v,u)。 

 

(3) 流量平衡:对于∀u∈V −{s,t},要求∑f(u,v)=0。 

 

 

dinic

 

  1. 根据残量网络计算层次图。
  2. 在层次图中使用DFS沿阻塞流(不考虑反向弧时的极大流 层次图中的)进行增广直到不存在增广路
  3. 重复以上步骤直到无法增广
技术分享
int cur[N];
int vis[N],d[N],q[N],head,tail;
bool bfs(){
    memset(vis,0,sizeof(vis));
    memset(d,0,sizeof(d));
    head=tail=1;
    q[tail++]=s;d[s]=0;vis[s]=1;
    while(head!=tail){
        int u=q[head++];
        for(int i=h[u];i;i=e[i].ne){
            int v=e[i].v;
            if(!vis[v]&&e[i].c>e[i].f){
                vis[v]=1;d[v]=d[u]+1;
                q[tail++]=v;
                if(v==t) return 1;
            }
        }
    }
    return 0;
}
int dfs(int u,int a){
    if(u==t||a==0) return a;
    int flow=0,f;
    for(int &i=cur[u];i;i=e[i].ne){
        int v=e[i].v;
        if(d[v]==d[u]+1&&(f=dfs(v,min(a,e[i].c-e[i].f)))>0){
            flow+=f;
            e[i].f+=f;
            e[((i-1)^1)+1].f-=f;
            a-=f;
            if(a==0) break;
        }
    }
    return flow;
}
int dinic(){
    int flow=0;
    while(bfs()){
        for(int i=s;i<=t;i++) cur[i]=h[i];
        flow+=dfs(s,INF);
    }
    return flow;
}
View Code

2.最小割

最大流的对偶问题

流网络G =(V,E)的割(cut)[S,T]将点集V划分为S和T(T =V −S)两个部分,

使得源s∈S且汇t∈T。符号[S,T]代表一个边集合{ u,v | u,v ∈E,u∈S,v∈T}。

穿过割 [S,T]的净流(net flow)定义为 f (S,T),割[S,T]的容量(capacity)定义为c(S,T),一般 记为c[S,T]。

一个网络的最小割(minimum cut)也就是该网络中容量最小的割。 

增广路算法结束时,所有还有流量(从s走)的点组成S,没有流量的点组成T

最大流的流量就是最小割的容量

 

3.最小费用最大流

(1)spfa费用流

 

用spfa找最短路来增广

 

保存pre[i]和pos[i]分别是最短路中的父节点和入边

技术分享
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
const int N=5005,M=5e4+5,INF=1e9;
int read(){
    char c=getchar();int x=0,f=1;
    while(c<0||c>9){if(c==-)f=-1; c=getchar();}
    while(c>=0&&c<=9){x=x*10+c-0; c=getchar();}
    return x*f;
}
int n,m,s,t,u,v,w,c;
struct edge{
    int v,ne,c,f,w;
}e[M<<1];
int cnt,h[N];
inline void ins(int u,int v,int c,int w){
    cnt++;
    e[cnt].v=v;e[cnt].c=c;e[cnt].f=0;e[cnt].w=w;
    e[cnt].ne=h[u];h[u]=cnt;
    cnt++;
    e[cnt].v=u;e[cnt].c=0;e[cnt].f=0;e[cnt].w=-w;
    e[cnt].ne=h[v];h[v]=cnt;
}
int d[N],pre[N],pos[N],q[N],head=1,tail=1,inq[N];
inline void lop(int &x){if(x==N) x=1;else if(x==0) x=N-1;}
bool spfa(){
    memset(d,127,sizeof(d));
    d[s]=0;pre[t]=-1;
    head=tail=1;
    memset(inq,0,sizeof(inq));
    q[tail++]=s;inq[s]=1;
    while(head!=tail){
        int u=q[head++];lop(head);inq[u]=0;
        for(int i=h[u];i;i=e[i].ne){
            int v=e[i].v,w=e[i].w;
            if(d[v]>d[u]+w&&e[i].c>e[i].f){
                d[v]=d[u]+w;
                pre[v]=u;
                pos[v]=i;
                if(!inq[v]){
                    if(d[v]<d[q[head]]) head--,lop(head),q[head]=v;
                    else q[tail++]=v,lop(tail);
                    inq[v]=1;
                }
            }
        }
    }
    return pre[t]==-1?0:1;
}
void mcmf(){
    ll flow=0,cost=0;
    while(spfa()){
        int f=INF;
        for(int i=t;i!=s;i=pre[i]) f=min(f,e[pos[i]].c-e[pos[i]].f);
        flow+=f;
        cost+=f*d[t];
        for(int i=t;i!=s;i=pre[i]){
            e[pos[i]].f+=f;
            e[((pos[i]-1)^1)+1].f-=f;
        }
    }
    printf("%lld %lld",flow,cost);
}
int main(int argc, const char * argv[]) {
    n=read();m=read();s=read();t=read();
    for(int i=1;i<=m;i++){
        u=read();v=read();c=read();w=read();
        ins(u,v,c,w);
    }
    mcmf();
    return 0;
}
View Code

(2)zkw费用流

http://www.artofproblemsolving.com/community/c1368h1020435

 

 


 


 


 

【建模】

1.公平分配问题

把X分配给Y,一个X有两个Y可选,让分配到最多的最少

二分图模型,X和Y构成二分图

二分最多最少值mid

 

s--1-->X--1-->Y--mid-->t

看maxflow==|X|

 


 

2.最大闭合子图

定义一个有向图G = (V,E)的闭合图(closure)10是该有向图的一个点集,且该点集的所 有出边都还指向该点集。即闭合图内的任意点的任意后继也一定在闭合图中。 

在原图点集的基础上增加源s和汇t;

将原图每条有向边 u,v ∈E替换为容量为c(u,v)=∞的有向边u,v ∈EN;

增加连接源s到原图每个正权点v(wv >0)的有向边s,v ∈EN,容量为c(s,v)=wv;

增加连接原图每个负权点v(wv <0)到汇t的有向边v,t ∈EN,容量为c(v,t)=−wv 

(这样下来两个边权都是正数)

s--点权-->正权点----INF----负权点--|点权|-->t

胡波涛论文中有详细证明

我们也可以简单的思考最小割,要么(1)把s-->正u割了,要么(2)把负v-->t割了

(1)相当于不选择这个u,他的后继就没必要选了,同时损失wu

(2)相当于选择了u,同时选择了他的后继v,所以损失wv

 


3.二分图最大匹配

s--1-->X--1-->Y--1-->t 


 

4.最小路径覆盖问题

G 的最小路径覆盖是G 的所含路径条数最少的路径覆盖。

有点逆向思考的感觉
最差情况所有的点都是一条路径
两个点连起来的话就少一条路径一个点
拆成入点X和出点Y,构成二分图,ans=n-最大匹配数

 


 

5.

网络流算法与建模总结

标签:htm   memset   cost   name   isp   column   read   替换   color   

原文地址:http://www.cnblogs.com/candy99/p/6104076.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!