码迷,mamicode.com
首页 > 系统相关 > 详细

py-faster-rcnn + opencv3.0.0 + ubuntu16.04配置

时间:2017-03-31 09:17:59      阅读:1068      评论:0      收藏:0      [点我收藏+]

标签:ide   ++   ima   译文   模型   data   接口   lease   err   

最近开始做行人检测,因此开始接触faster-rcnn,这里贴上配置教程(亲测可行),不过是基于cpu的,蓝瘦。。。

参考博客:http://www.tuicool.com/articles/nYJrYra(opencv配置)

              http://blog.csdn.net/sinat_17196995/article/details/53410292(faster-rcnn配置)

环境:ubuntu16.04

一、首先要配置好opencv

这里我是在opencv官网上下载了opencv-3.0.0-rc1(版本最好3.0.0以上),然后开始安装opencv所需的库(编译器、必须库、可选库)

1 [compiler] sudo apt-get install build-essential
2 [required] sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev
3 [optional] sudo apt-get install python-dev python-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

 

然后开始编译opencv,将下载得到的opencv3.0.0解压:

unzip opencv- 3.0. 0-rc1. zip

创建编译目录,编译:

cd ~/opencv-3.0.0-rc1
mkdir release
cd release
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..
make
sudo make install

 

最后测试一下我们的opencv:

(1)创建工作目录

mkdir ~/opencv-lena
cd ~/opencv-lena
gedit DisplayImage.cpp

 

(2)编辑如下代码:

#include <stdio.h>
#include <opencv2/opencv.hpp>
using namespace cv;
int main(int argc, char** argv )
{
    if ( argc != 2 )
    {
        printf("usage: DisplayImage.out <Image_Path>\n");
        return -1;
    }
    Mat image;
    image = imread( argv[1], 1 );
    if ( !image.data )
    {
        printf("No image data \n");
        return -1;
    }
    namedWindow("Display Image", WINDOW_AUTOSIZE );
    imshow("Display Image", image);
    waitKey(0);
    return 0;
}

 

(3)创建CMake编译文件:

gedit CMakeLists.txt

 

(4)编译

cd ~/opencv-lena
cmake .
make

 

(5)执行

此时opencv-lena文件夹中已经产生了可执行文件DisplayImage,下载lena.jpg放在opencv-lena下,运行下面命令:

./DisplayImage lena.jpg

 

(6)结果:

技术分享

 

二、开始配置CPU模式的py-faster-rcnn:

第一步:下载源码和demo模型数据 

先cd到你想保存的目录,然后运行
git clone –recursive https://github.com/rbgirshick/py-faster-rcnn.git 

(这里注意一下,最好用clone命令,因为我自己尝试过几次在github官网上下载它,下载文件不全,没有caffe-fast-rcnn文件,完整的文件大小在40M左右)
在下载好的py-faster-rcnn的文件夹下运行 
./data/scripts/fetch_faster_rcnn_models.sh 
模型数据下载。

 

第二步:编译cpython模块 
进入lib文件夹下,首先修改下set.py文件的内容,注释掉 
GPU的相关代码。参考如下:(…表示中间又不用注释跳过去的内容) 
… 
#CUDA = locate_cuda() 
… 
# self.set_executable(‘compiler_so’, CUDA[‘nvcc’]) 
… 
# Extension(‘nms.gpu_nms’, 
# [‘nms/nms_kernel.cu’, ‘nms/gpu_nms.pyx’], 
# library_dirs=[CUDA[‘lib64’]], 
# libraries=[‘cudart’], 
# language=’c++’, 
# runtime_library_dirs=[CUDA[‘lib64’]], 
# # this syntax is specific to this build system 
# # we’re only going to use certain compiler args with nvcc and not with 
# # gcc the implementation of this trick is in customize_compiler() below 
# extra_compile_args={‘gcc’: [“-Wno-unused-function”], 
# ‘nvcc’: [‘-arch=sm_35’, 
# ‘–ptxas-options=-v’,** 
# ‘-c’, 
# ‘–compiler-options’, 
# “’-fPIC’”]}, 
# include_dirs = [numpy_include, CUDA[‘include’]] 
# ), 
… 
修改完之后保存退出,在lib目录下执行 make命令。

 

第三步:修改faster-rcnn编译文件 
进入caffe-fast-rcnn目录,首先执行cp Makefile.config.example Makefile.config 
大部分跟caffe安装一样,下面修改Makefile.config 
参考如下: 
# USE_CUDNN := 1 注意这里一定要注释掉,下面显示的是不用注释的部分。 (这里有关路径可以参照当时自己配置好的caffe中的路径来)
… 
CPU_ONLY := 1 
… 
BLAS := atlas 
BLAS_INCLUDE := /usr/include/atlas-x86_64-base (这里每个人可能不一样,按照自己的路径来就行)
BLAS_LIB := /usr/lib64/atlas 
… 
PYTHON_INCLUDE := /usr/include/python2.7 \ 
/usr/lib64/python2.7/site-packages/numpy/core/include   (这里要注意一点,因为可能大多数都用的anaconda的IDE,那么路径就要改为n你anaconda的路径,并且你在后面运行faster-rcnn,如果它提示你缺少什么库,你就用pip下载那个库,还要放到anaconda的site-packages,才算在anaconda中导入了这个库
… 
PYTHON_LIB := /usr/lib64 
… 
WITH_PYTHON_LAYER := 1 
… 
INCLUDE_DIRS := (PYTHONINCLUDE)/usr/includeLIBRARYDIRS:=(PYTHON_LIB) /usr/lib64  
… 
BUILD_DIR := build 
DISTRIBUTE_DIR := distribute 


然后运行 cd /home/**(您服务器的名字)/py-faster-rcnn/caffe-fast-rcnn 
mkdir build 
cd build 
cmake .. 
make -j8 
make test 
make runtest -j8 
make pycaffe 
以上是检验你的caffe和Python接口编译有没有问题。

(补充一点,由于不用gpu,所以你在运行runtest估计会出错,关于gpu的错误,可以不用执行这一步)

 

第四步:运行demo 
在tools文件下 运行 ./demo.py –cpu 
如果报错,缺少一些东西,可能是一些库文件没有下载,根据错误提示下载就好。 
如果提示一下错误:ImportError: No module named gpu_nms 
不要着急,在py-faster-rcnn下搜索nms_wrapper.py打开它修改 
force_cpu =True 
也建议把nms_wrapper.py的第9行 from nms.gpu_nms import gpu_nms 注释掉。然后运行demo,等一会就出来一些标记目标的图片,就成功啦。

技术分享

 

最后的最后,配置cpu的前提是你的机子内存要大,至少要8g,楼主的4g根本跑不起来demo(提示说核心已转储,就是说内存访问超出边界,内存不够,或许缩小点图片或者换个网络可以,但终究太慢太慢),所以这个cpu配置仅供参考。。。。

 

 

 

 

 

 

 

安装opencv所需的库(编译器、必须库、可选库)

py-faster-rcnn + opencv3.0.0 + ubuntu16.04配置

标签:ide   ++   ima   译文   模型   data   接口   lease   err   

原文地址:http://www.cnblogs.com/zf-blog/p/6649612.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!