码迷,mamicode.com
首页 > 编程语言 > 详细

基于pandas python的美团某商家的评论销售数据分析(可视化续)

时间:2018-08-12 00:29:14      阅读:169      评论:0      收藏:0      [点我收藏+]

标签:amp   groupby   vertica   orm   ram   return   结束   localtime   意义   

from pyecharts import Bar,Pie
import pandas as pd
import numpy as np
import  matplotlib.pyplot as  plt
import time
df=pd.read_excel("all_data_meituan.xlsx")
df.drop(‘comment‘,axis=1).head(2)

技术分享图片

df[‘avgPrice‘].value_counts()
# 同一家店的均价应该为同一个数值,所以这列数据没多大的意义
73    17400
Name: avgPrice, dtype: int64
df[‘anonymous‘].value_counts()
# 匿名评价与实名评价的比例大致在5:1左右
False    14402
True      2998
Name: anonymous, dtype: int64
def convertTime(x):
    y=time.localtime(x/1000)
    z=time.strftime("%Y-%m-%d %H:%M:%S",y)
    return z
df["commentTime"]=df["commentTime"].apply(convertTime)
df["commentTime"].head()
0    2018-05-09 22:21:48
1    2018-06-01 19:41:31
2    2018-04-04 11:52:23
3    2018-05-01 17:12:22
4    2018-05-17 16:48:04
Name: commentTime, dtype: object
# 在excel可以用筛选器直接看到这列中的数据含有缺失值,或者在拿到数据的时候,使用df.info() 查看每列的数据信息情况
df[‘dealEndtime‘].isna().value_counts()
# 这列数据中含有177个缺失值,其余完整
False    17223
True       177
Name: dealEndtime, dtype: int64
df[‘commentTime‘]=pd.to_datetime(df[‘commentTime‘])
df1 = df.set_index(‘commentTime‘)
df1.resample(‘D‘).size().sort_values(ascending=False).head(100)
df2=df1.resample(‘M‘).size().to_period()
df2=df2.reset_index()
# df2.columns
# from pyecharts import  Bar
bar =Bar("按月统计",width=1000,height=800)
bar.add("月统计表",df2[‘commentTime‘],df2[0],is_label_show=True, is_datazoom_show=True,is_toolbox_show=True,is_more_utils=True)
bar

技术分享图片

df[‘commentTime‘]=pd.to_datetime(df[‘commentTime‘])
df[‘hour‘] = df[‘commentTime‘].dt.hour
df2= df.groupby([‘hour‘]).size()
df2
from pyecharts import  Bar
bar =Bar("分时统计",width=1000,height=600)
bar.add("分时计表",[‘{} h‘.format(i) for i in df2.index],df2.values,is_label_show=True, is_datazoom_show=True,is_toolbox_show=True,is_more_utils=True,is_random=True)
bar

技术分享图片

df[‘commentTime‘]=pd.to_datetime(df[‘commentTime‘])
df[‘weekday‘] = df[‘commentTime‘].dt.weekday
df2= df.groupby([‘weekday‘]).size()
#  周末吃外卖的还是教平时多了一些
from pyecharts import  Bar
bar =Bar("周总计",width=750,height=400)
weekday=["一","二","三","四","五","六","日"]
bar.add("周总计",[‘周{}‘.format(i) for i in weekday],df2.values,is_label_show=True, is_datazoom_show=False,is_toolbox_show=True,is_more_utils=True,is_random=True)
bar

技术分享图片

# 处理数据前需要先处理缺失值
# 订单结束时间清洗
df[‘dealEndtime‘].fillna(method=‘ffill‘).apply(lambda x:time.strftime("%Y-%m-%d %H:%M:%S",time.localtime(x))).head()
0    2018-06-30 14:00:00
1    2018-06-30 14:00:00
2    2018-06-30 14:00:00
3    2018-06-30 14:00:00
4    2018-06-30 14:00:00
Name: dealEndtime, dtype: object
df[‘menu‘].dropna().astype(‘category‘).value_counts()
2人午晚餐                       7640
单人午晚餐                       3920
学生专享午晚自助                    2638
4人午/晚自助                     1581
单人下午自助烤肉                     639
6人午/晚自助                      507
周一至周五自助烤肉/周六日及节假日自助烤肉2选1     209
单人午/晚自助                       67
周一至周五自助烤肉,免费WiFi              22
Name: menu, dtype: int64

技术分享图片

df[‘readCnt‘].corr(df[‘star‘])
# 评论阅读书与客户评价分数高低的相关性
0.05909293203205019
df_most=df[(df["menu"]=="2人午晚餐")][‘star‘].value_counts().reindex(range(10,60,10))
10     329
20     533
30    2002
40    2704
50    2072
Name: star, dtype: int64

技术分享图片

df[(df["menu"]=="单人午晚餐")][‘star‘].value_counts()
30    1215
40    1208
50    1093
20     298
10     106
Name: star, dtype: int64
# 学生专享午晚自助 
df[(df["menu"]=="学生专享午晚自助")][‘star‘].value_counts()
40    954
50    863
30    529
20    191
10    101
Name: star, dtype: int64
df[(df["menu"]=="4人午/晚自助")][‘star‘].value_counts()
50    536
30    432
40    414
10    131
20     68
Name: star, dtype: int64
df[(df["menu"]=="单人下午自助烤肉")][‘star‘].value_counts()
30    208
50    169
40    144
10     98
20     20
Name: star, dtype: int64
df[(df["menu"]=="6人午/晚自助")][‘star‘].value_counts()
50    245
40    142
30    112
10      8
Name: star, dtype: int64
#周一至周五自助烤肉/周六日及节假日自助烤肉2选1
df[(df["menu"]=="周一至周五自助烤肉/周六日及节假日自助烤肉2选1")][‘star‘].value_counts()
50    87
40    66
30    46
20    10
Name: star, dtype: int64
df[(df["menu"]=="单人午/晚自助")][‘star‘].value_counts()
50    30
40    27
30    10
Name: star, dtype: int64
df[(df["menu"]=="周一至周五自助烤肉,免费WiFi")][‘star‘].value_counts().reindex(range(10,51,10)).fillna(0)
10     0.0
20     0.0
30     0.0
40     0.0
50    22.0
Name: star, dtype: float64
# df.groupby([‘menu‘,‘star‘]).size().to_excel("all_menu_star.xls")
df.groupby([‘menu‘,‘star‘]).size()
menu                      star
2人午晚餐                     10       329
                          20       533
                          30      2002
                          40      2704
                          50      2072
4人午/晚自助                   10       131
                          20        68
                          30       432
                          40       414
                          50       536
6人午/晚自助                   10         8
                          30       112
                          40       142
                          50       245
单人下午自助烤肉                  10        98
                          20        20
                          30       208
                          40       144
                          50       169
单人午/晚自助                   30        10
                          40        27
                          50        30
单人午晚餐                     10       106
                          20       298
                          30      1215
                          40      1208
                          50      1093
周一至周五自助烤肉/周六日及节假日自助烤肉2选1  20        10
                          30        46
                          40        66
                          50        87
周一至周五自助烤肉,免费WiFi          50        22
学生专享午晚自助                  10       101
                          20       191
                          30       529
                          40       954
                          50       863
dtype: int64
df.groupby([‘star‘,‘menu‘,]).size()
star  menu                    
10    2人午晚餐                        329
      4人午/晚自助                      131
      6人午/晚自助                        8
      单人下午自助烤肉                      98
      单人午晚餐                        106
      学生专享午晚自助                     101
20    2人午晚餐                        533
      4人午/晚自助                       68
      单人下午自助烤肉                      20
      单人午晚餐                        298
      周一至周五自助烤肉/周六日及节假日自助烤肉2选1      10
      学生专享午晚自助                     191
30    2人午晚餐                       2002
      4人午/晚自助                      432
      6人午/晚自助                      112
      单人下午自助烤肉                     208
      单人午/晚自助                       10
      单人午晚餐                       1215
      周一至周五自助烤肉/周六日及节假日自助烤肉2选1      46
      学生专享午晚自助                     529
40    2人午晚餐                       2704
      4人午/晚自助                      414
      6人午/晚自助                      142
      单人下午自助烤肉                     144
      单人午/晚自助                       27
      单人午晚餐                       1208
      周一至周五自助烤肉/周六日及节假日自助烤肉2选1      66
      学生专享午晚自助                     954
50    2人午晚餐                       2072
      4人午/晚自助                      536
      6人午/晚自助                      245
      单人下午自助烤肉                     169
      单人午/晚自助                       30
      单人午晚餐                       1093
      周一至周五自助烤肉/周六日及节假日自助烤肉2选1      87
      周一至周五自助烤肉,免费WiFi              22
      学生专享午晚自助                     863
dtype: int64
df.groupby([‘star‘,‘menu‘,]).size()[50]
menu
2人午晚餐                       2072
4人午/晚自助                      536
6人午/晚自助                      245
单人下午自助烤肉                     169
单人午/晚自助                       30
单人午晚餐                       1093
周一至周五自助烤肉/周六日及节假日自助烤肉2选1      87
周一至周五自助烤肉,免费WiFi              22
学生专享午晚自助                     863
dtype: int64

技术分享图片

# userId
# 这家店铺有好多回头客,万万没想到
df[df[‘userId‘]!=0][‘userId‘].value_counts().head(40)
266045270     64
152775497     60
80372612      60
129840082     60
336387962     60
34216474      60
617772217     60
82682689      54
287219504     49
884729389     45
868838851     40
409054441     40
86939815      40
776086712     40
48597225      40
111808598     40
240199490     40
83068123      40
298504911     40
1042639014    40
912472277     40
98198819      40
1494880345    40
152930400     40
139581136     40
404183587     40
714781743     40
292809386     40
18111538      40
1097689674    40
300905323     40
232697160     40
141718492     40
879430090     40
696143486     40
13257519      40
983797146     40
911947863     40
993057629     40
494215297     40
Name: userId, dtype: int64
df[df[‘userName‘]!="匿名用户"][‘userName‘].value_counts().head(40)
xuruiss1026         64
黑发飘呀飘               60
么么哒我是你聪叔            60
jIx325233926        60
siisgood            60
vTF610712604        60
始于初见的你              60
yumengkou           54
Daaaav              49
梁子7543              45
oev575457132        40
oUI806055883        40
joF498901567        40
liE32679330         40
张齐齐123              40
VPA342570392        40
kingd123            40
Nqr695642404        40
Mvo148723747        40
ree177064067        40
大游                  40
_qq3sh1369887220    40
bQl271583480        40
凯蒂宝                 40
安然~轩                40
FQe845913598        40
清晨cxh98             40
cBj31240225         40
天蛟Wing              40
oMz861346972        40
热带鱼7697             40
Mqg827794346        40
nXu534267448        40
aYH197128794        40
榴莲馅月饼               40
leeman666888        40
迅行天下                40
滨海之恋33              40
pHO437742850        40
SzX539077433        40
Name: userName, dtype: int64
df.groupby([‘star‘,‘userLevel‘,]).size()
star  userLevel
10    0             187
      1             139
      2             164
      3             193
      4              80
      5              10
20    0             223
      1              88
      2             304
      3             294
      4             207
      5              21
30    0            1147
      1             405
      2            1057
      3            1230
      4             570
      5             165
      6              20
40    0             870
      1             432
      2            1360
      3            1751
      4            1026
      5             261
      6              25
50    0             698
      1             386
      2            1167
      3            1670
      4             802
      5             318
      6             130
dtype: int64
df_level_star = df.groupby([‘userLevel‘,‘star‘]).size()
attr = np.arange(10,60,10)

from pyecharts import Bar
bar = Bar("用户等级与评分",title_pos="center")
df_0 = df_level_star[0].values
df_1 = df_level_star[1].values
df_2 = df_level_star[2].values
df_3 = df_level_star[3].values
df_4 = df_level_star[4].values
df_5 = df_level_star[5].values
# df_6 = df_level_star[6].values
df_6 = df_level_star[6].reindex(attr).fillna(0).values

bar.add("level 0",attr,df_0,is_label_show=True,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar.add("level 1",attr,df_1,is_label_show=True,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar.add("level 2",attr,df_2,is_label_show=True,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar.add("level 3",attr,df_3,mark_line=["average"],mark_point=[‘max‘,‘min‘],is_label_show=True,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar.add("level 4",attr,df_4,is_label_show=True,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar.add("level 5",attr,df_5,is_label_show=True,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar.add("level 6",attr,df_6,is_label_show=True,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar
<div id="5fcf9a4be1814dae9a66e63db26848a9" style="width:800px;height:400px;"></div>
bar = Bar("用户等级与评分",title_pos="center",title_color="red")
attr = np.arange(10,60,10)
df_0 = df_level_star[0].values
df_1 = df_level_star[1].values
df_2 = df_level_star[2].values
df_3 = df_level_star[3].values
df_4 = df_level_star[4].values
df_5 = df_level_star[5].values
# df_6 = df_level_star[6].values
df_6 = df_level_star[6].reindex(attr).fillna(0).values
bar.add("level 0",attr,df_0,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar.add("level 1",attr,df_1,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar.add("level 2",attr,df_2,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar.add("level 3",attr,df_3,is_stack=True,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar.add("level 4",attr,df_4,is_stack=True,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar.add("level 5",attr,df_5,is_stack=True,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar.add("level 6",attr,df_6,is_stack=True,legend_pos=‘right‘,legend_orient=‘vertical‘,label_text_size=12)
bar

技术分享图片

df[‘star‘].corr(df[‘userLevel‘])
0.14389808871897794
df_zan=df[‘zanCnt‘].value_counts()
from pyecharts import Bar
bar=Bar("点赞统计")
bar.add("点赞分布",df_zan.index[1:],df_zan.values[1:],is_label_show=True)
bar
<div id="3123fe244a684d7e97c8c3d9f47aa715" style="width:800px;height:400px;"></div>
df.describe()
avgPrice dealEndtime did readCnt replyCnt reviewId star userId userLevel zanCnt hour weekday
count 17400.0 1.722300e+04 1.740000e+04 17400.000000 17400.000000 1.740000e+04 17400.000000 1.740000e+04 17400.000000 17400.000000 17400.000000 17400.000000
mean 73.0 1.529633e+09 4.376319e+07 1622.936149 0.032759 1.443980e+09 37.691954 3.224900e+08 2.335230 0.096264 14.955460 3.152356
std 0.0 5.730086e+06 5.749815e+06 4981.816447 0.260349 2.208396e+08 10.813002 3.914649e+08 1.470979 0.511591 5.046872 2.044944
min 73.0 1.483078e+09 1.330754e+06 20.000000 0.000000 1.093178e+09 10.000000 0.000000e+00 0.000000 0.000000 0.000000 0.000000
25% 73.0 1.530338e+09 4.432824e+07 162.000000 0.000000 1.197515e+09 30.000000 4.527015e+07 1.000000 0.000000 11.000000 1.000000
50% 73.0 1.530338e+09 4.432824e+07 304.000000 0.000000 1.606347e+09 40.000000 1.527755e+08 3.000000 0.000000 15.000000 3.000000
75% 73.0 1.530338e+09 4.432853e+07 751.000000 0.000000 1.646467e+09 50.000000 4.859086e+08 3.000000 0.000000 19.000000 5.000000
max 73.0 1.530338e+09 4.597465e+07 77837.000000 4.000000 1.698204e+09 50.000000 1.771740e+09 6.000000 8.000000 23.000000 6.000000
df[‘userLevel‘].value_counts().reindex(range(7))
0    3125
1    1450
2    4052
3    5138
4    2685
5     775
6     175
Name: userLevel, dtype: int64
df_level=df[‘userLevel‘].value_counts().reindex(range(7))
from pyecharts import Pie
pie=Pie("用户等级分布",title_pos="center",width=900)
pie.add("levels distribution",["level "+str(i) for i in range(7)],df_level.values,is_random=True,radidus=[30,45],legend_pos=‘left‘,rosetype=‘area‘,legend_orient=‘vertical‘,is_label_show=True,label_text_size=20)
pie

技术分享图片

基于pandas python的美团某商家的评论销售数据分析(可视化续)

标签:amp   groupby   vertica   orm   ram   return   结束   localtime   意义   

原文地址:https://www.cnblogs.com/onemorepoint/p/9461628.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!