求最小公约数,最容易想到的是欧几里得算法,这个算法也是比较容易理解的,效率也是很不错的。也叫做辗转相除法。
对任意两个数a,b(a>b),d=gcd(a,b),如果b不为零,那么gcd(a,b)=gcd(b,a%b)
证明: 令 r=a%b,即存在k,使得 a=b*k+r,那么r=a-b*k;显然r>=0, r%d=((a%d)-(b*k)%d)%d,因为a%d=b%d=0,所以r%d=0;
因此求gcd(a,b)可以转移到求gcd(b,a%b),那么这就是个递归过程了,那什么时候递归结束呢,想一下,a,b不能为零,则可以把当b为零,作为递归的结束(当然还可以以其它结束条件),这就是求最大公约数的方法可以以其它结束条件),这就是求最大公约数的方法。
欧几里得递归版:
int gcd(int a,int b)
{
if(b==0) return a;
else return gcd(b,a%b);
}非递归版:
int gcd(int a,int b)//euclid
{
int r;
while(b!=0)
{
r=a%b;
a=b;
b=r;
}
return a;
}
比较好理解吧,实现起来也比较简单,效率也不比员算法差;
下面是实现的代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
using namespace std;
int stein(int a,int b)
{
if(a==0) return b;
if(b==0) return a;
if(a%2==0 && b%2==0) return 2*stein(a>>1,b>>1);
else if(a%2==0) return stein(a>>1,b);
else if(b%2==0) return stein(a,b>>1);
else return stein(abs(a-b),min(a,b));
}
int main()
{
int a,b;
scanf("%d%d",&a,&b);
printf("%d\n",stein(a,b));
}
原文地址:http://blog.csdn.net/whjkm/article/details/41050267