标签:机器学习
(转载请注明出处:http://blog.csdn.net/buptgshengod)
def OsDistance(vector1, vector2):
sqDiffVector = vector1-vector2
sqDiffVector=sqDiffVector**2
sqDistances = sqDiffVector.sum()
distance = sqDistances**0.5
return distance两个变量之间的相关系数越高,从一个变量去预测另一个变量的精确度就越高,这是因为相关系数越高,就意味着这两个变量的共变部分越多,所以从其中一个变量的变化就可越多地获知另一个变量的变化。如果两个变量之间的相关系数为1或-1,那么你完全可由变量X去获知变量Y的值。
· 当相关系数为0时,X和Y两变量无关系。
· 当X的值增大,Y也增大,正相关关系,相关系数在0.00与1.00之间
· 当X的值减小,Y也减小,正相关关系,相关系数在0.00与1.00之间
· 当X的值增大,Y减小,负相关关系,相关系数在-1.00与0.00之间
当X的值减小,Y增大,负相关关系,相关系数在-1.00与0.00之间
相关系数的绝对值越大,相关性越强,相关系数越接近于1和-1,相关度越强,相关系数越接近于0,相关度越弱。
在python中用函数corrcoef实现,具体方法见http://infosec.pku.edu.cn/~dulz/doc/Numpy_Example_List.htm

def cosSim(inA,inB):
num = float(inA.T*inB)
denom = la.norm(inA)*la.norm(inB)
return 0.5+0.5*(num/denom)【机器学习算法-python实现】协同过滤(cf)的三种方法实现,布布扣,bubuko.com
【机器学习算法-python实现】协同过滤(cf)的三种方法实现
标签:机器学习
原文地址:http://blog.csdn.net/buptgshengod/article/details/25958547