package test;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class WordCountTest {
/**
* MapReduceBase类:实现了Mapper和Reducer接口的基类(其中的方法只是实现接口,而未作任何事情)
* Mapper接口:
* WritableComparable接口:实现WritableComparable的类可以相互比较。所有被用作key的类应该实现此接口。
* Reporter 则可用于报告整个应用的运行进度,本例中未使用。
*
*/
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
/**
* LongWritable, IntWritable, Text 均是 Hadoop 中实现的用于封装 Java 数据类型的类,这些类实现了WritableComparable接口,
* 都能够被串行化从而便于在分布式环境中进行数据交换,你可以将它们分别视为long,int,String 的替代品。
*/
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();//Text 实现了BinaryComparable类可以作为key值
/**
* Mapper接口中的map方法:
* void map(K1 key, V1 value, OutputCollector<K2,V2> output, Reporter reporter)
* 映射一个单个的输入k/v对到一个中间的k/v对
* 输出对不需要和输入对是相同的类型,输入对可以映射到0个或多个输出对。
* OutputCollector接口:收集Mapper和Reducer输出的<k,v>对。
* OutputCollector接口的collect(k, v)方法:增加一个(k,v)对到output
*/
public void map(Object key, Text value, Context context) throws IOException, InterruptedException {
/**
* 原始数据:
* c++ java hello
world java hello
you me too
map阶段,数据如下形式作为map的输入值:key为偏移量
0 c++ java hello
16 world java hello
34 you me too
*/
/**
* 以下解析键值对
* 解析后以键值对格式形成输出数据
* 格式如下:前者是键排好序的,后者数字是值
* c++ 1
* java 1
* hello 1
* world 1
* java 1
* hello 1
* you 1
* me 1
* too 1
* 这些数据作为reduce的输出数据
*/
StringTokenizer itr = new StringTokenizer(value.toString());//得到什么值
System.out.println("value什么东西 : "+value.toString());
System.out.println("key什么东西 : "+key.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
/**
* reduce过程是对输入数据解析形成如下格式数据:
* (c++ [1])
* (java [1,1])
* (hello [1,1])
* (world [1])
* (you [1])
* (me [1])
* (you [1])
* 供接下来的实现的reduce程序分析数据数据
*
*/
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
/**
* 自己的实现的reduce方法分析输入数据
* 形成数据格式如下并存储
* c++ 1
* hello 2
* java 2
* me 1
* too 1
* world 1
* you 1
*
*/
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
/**
* JobConf:map/reduce的job配置类,向hadoop框架描述map-reduce执行的工作
* 构造方法:JobConf()、JobConf(Class exampleClass)、JobConf(Configuration conf)等
*/
//根据自己的实际情况填写输入分析的目录和结果输出的目录
args = new String[2];
args[0] = "hdfs://192.168.13.33:9000/in";
args[1] = "hdfs://192.168.13.33:9000/out5";
Configuration conf = new Configuration();
// conf.set("fs.defaultFS", "hdfs://Master.Hadoop:9000");
// conf.set("hadoop.job.user","root");
// conf.set("mapreduce.framework.name","yarn");
// //conf.set("mapred.job.tracker","192.168.1.187:9001"); 用下面的设置而不用该设置,该设置是旧版本的设置,自己用的是hadoop2.3.0,查看官方配置文档后发现里面用的是下面mapreduce.jobtracker.address的配置地址
// conf.set("mapreduce.jobtracker.address","192.168.13.33:9001");
// conf.set("yarn.resourcemanager.hostname", "master.hadoop");
// conf.set("yarn.resourcemanager.admin.address", "192.168.13.33:8033");
// conf.set("yarn.resourcemanager.address", "192.168.13.33:8032");
// conf.set("yarn.resourcemanager.resource-tracker.address", "192.168.13.33:8031");
// conf.set("yarn.resourcemanager.scheduler.address", "192.168.13.33:8030");
String[] otherArgs = new GenericOptionsParser(conf, args).getRemainingArgs();
for(String s : otherArgs){
System.out.println(s);
}
//这里需要配置参数即输入和输出的HDFS的文件路径
if (otherArgs.length != 2) {
System.err.println("Usage: wordcount <in> <out>");
System.exit(2);
}
// JobConf conf1 = new JobConf(WordCount.class);
Job job = new Job(conf, "word count");//Job(Configuration conf, String jobName) 设置job名称和
job.setJarByClass(WordCountTest.class);
job.setMapperClass(TokenizerMapper.class); //为job设置Mapper类
job.setCombinerClass(IntSumReducer.class); //为job设置Combiner类
job.setReducerClass(IntSumReducer.class); //为job设置Reduce类
job.setOutputKeyClass(Text.class); //设置输出key的类型
job.setOutputValueClass(IntWritable.class);// 设置输出value的类型
FileInputFormat.addInputPath(job, new Path(otherArgs[0])); //为map-reduce任务设置InputFormat实现类 设置输入路径
FileOutputFormat.setOutputPath(job, new Path(otherArgs[1]));//为map-reduce任务设置OutputFormat实现类 设置输出路径
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}原文地址:http://blog.csdn.net/san1156/article/details/41486603