标签:hadoop mapreduce 打成jar包 mapreduce运行时参数指定 mapredece
Hadoop读书笔记(一)Hadoop介绍:http://blog.csdn.net/caicongyang/article/details/39898629
Hadoop读书笔记(二)HDFS的shell操作:http://blog.csdn.net/caicongyang/article/details/41253927
Hadoop读书笔记(三)Java API操作HDFS:http://blog.csdn.net/caicongyang/article/details/41290955
Hadoop读书笔记(四)HDFS体系结构 :http://blog.csdn.net/caicongyang/article/details/41322649
Hadoop读书笔记(五)MapReduce统计单词demo:http://blog.csdn.net/caicongyang/article/details/41453579
Hadoop读书笔记(六)MapReduce自定义数据类型demo:http://blog.csdn.net/caicongyang/article/details/41490379
Hadoop读书笔记(七)MapReduce
0.x版本API使用demo:http://blog.csdn.net/caicongyang/article/details/41493325
KpiApp.java
package cmd;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
import java.net.URI;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
/**
*
* <p>
* Title: KpiApp.java
* Package mapReduce
* </p>
* <p>
* Description: 统计流量 (打包jar命令行运行) :extends Configured implements Tool
* <p>
* @author Tom.Cai
* @created 2014-11-25 下午10:23:33
* @version V1.0
*
*/
public class KpiApp extends Configured implements Tool{
public static void main(String[] args) throws Exception {
ToolRunner.run(new KpiApp(), args);
}
@Override
public int run(String[] arg0) throws Exception {
String INPUT_PATH = arg0[0];
String OUT_PATH = arg0[1];
FileSystem fileSystem = FileSystem.get(new URI(INPUT_PATH), new Configuration());
Path outPath = new Path(OUT_PATH);
if (fileSystem.exists(outPath)) {
fileSystem.delete(outPath, true);
}
Job job = new Job(new Configuration(), KpiApp.class.getSimpleName());
FileInputFormat.setInputPaths(job, INPUT_PATH);
job.setInputFormatClass(TextInputFormat.class);
job.setMapperClass(KpiMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(KpiWite.class);
job.setPartitionerClass(HashPartitioner.class);
job.setNumReduceTasks(1);
job.setReducerClass(KpiReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(KpiWite.class);
FileOutputFormat.setOutputPath(job, new Path(OUT_PATH));
job.setOutputFormatClass(TextOutputFormat.class);
job.waitForCompletion(true);
return 0;
}
static class KpiMapper extends Mapper<LongWritable, Text, Text, KpiWite> {
@Override
protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String[] splited = value.toString().split("\t");
String num = splited[1];
KpiWite kpi = new KpiWite(splited[6], splited[7], splited[8], splited[9]);
context.write(new Text(num), kpi);
}
}
static class KpiReducer extends Reducer<Text, KpiWite, Text, KpiWite> {
@Override
protected void reduce(Text key, Iterable<KpiWite> value, Context context) throws IOException, InterruptedException {
long upPackNum = 0L;
long downPackNum = 0L;
long upPayLoad = 0L;
long downPayLoad = 0L;
for (KpiWite kpi : value) {
upPackNum += kpi.upPackNum;
downPackNum += kpi.downPackNum;
upPayLoad += kpi.upPayLoad;
downPayLoad += kpi.downPayLoad;
}
context.write(key, new KpiWite(String.valueOf(upPackNum), String.valueOf(downPackNum), String.valueOf(upPayLoad), String.valueOf(downPayLoad)));
}
}
}
class KpiWite implements Writable {
long upPackNum;
long downPackNum;
long upPayLoad;
long downPayLoad;
public KpiWite() {
}
public KpiWite(String upPackNum, String downPackNum, String upPayLoad, String downPayLoad) {
this.upPackNum = Long.parseLong(upPackNum);
this.downPackNum = Long.parseLong(downPackNum);
this.upPayLoad = Long.parseLong(upPayLoad);
this.downPayLoad = Long.parseLong(downPayLoad);
}
@Override
public void readFields(DataInput in) throws IOException {
this.upPackNum = in.readLong();
this.downPackNum = in.readLong();
this.upPayLoad = in.readLong();
this.downPayLoad = in.readLong();
}
@Override
public void write(DataOutput out) throws IOException {
out.writeLong(upPackNum);
out.writeLong(downPackNum);
out.writeLong(upPayLoad);
out.writeLong(downPayLoad);
}
}
通过Eclipse的Export将上述的类打成kpi.jar
将jar包上传到Linux下通过 hadoop jar xxx.jar [parameter] [parameter]命令执行即可
例如:hadoop jar kpi.jar hdfs://192.168.80.100:9000/wlan hdfs://192.168.80.100:9000/wlan_out
即将上篇的代码完成改造可以在命令行下运行!
欢迎大家一起讨论学习!
有用的自己收!
记录与分享,让你我共成长!欢迎查看我的其他博客;我的博客地址:http://blog.csdn.net/caicongyang
Hadoop读书笔记(八)MapReduce 打成jar包demo
标签:hadoop mapreduce 打成jar包 mapreduce运行时参数指定 mapredece
原文地址:http://blog.csdn.net/caicongyang/article/details/41522323