高斯函数是数学上非常重要的函数,我们熟悉的正态分布的密度函数就是高斯函数,也称高斯分布。而正态分布无疑是概率论与数理统计里最重要的一个分布了。
现在的问题是如果给出一些点集,如何找到一个高斯函数来拟合这些点集呢!
当然,拟合方式还是最小二乘法,拟合函数形式为:
y=a*exp(-((x-b)/c)^2);
一共有三个参数,a、b、c.不过这种指数函数拟合比较难实现,所以利用对数变换将其化为二次函数,如下:
ln(y)=-(1/c^2)*x^2+(2b/c^2)*x +ln(a)-(b/c)^2;
这样,另z=ln(y),A=-(1/c^2),B=(2b/c^2),C=ln(a)-(b/c)^2;就可以利用最小二乘法拟合了,
这里我还是用奇异值分解法来解出最小二乘解,不过在这之前我先对点集做了处理,我并没有拟合所有的点集,因为这样效果很差,毕竟做了对数变换,
导致平坦点对曲线的影响太大,所以我事先判断出了峰值点,然后对峰值点做拟合,事实证明我的想法没错,拟合效果改善了很多!
VC实现效果如下:
核心程序实现如下:
//GaussFit.h
/*************************************************************************
版本: 2014-1-06
功能说明: 对平面上的一些列点给出最小二乘的高斯拟合,利用奇异值分解法
解得最小二乘解作为高斯参数。
调用形式: gaussfit( arrayx, arrayy,int n,float box,miny );;
参数说明: arrayx: arrayx[n],每个值为x轴一个点
arrayx: arrayy[n],每个值为y轴一个点
n : 点的个数
box : box[3],高斯函数的3个参数,分别为a,b,c;
miny :y方向上的平移,实际拟合的函数为y=a*exp(-((x-b)/c)^2)+miny
***************************************************************************/
#pragma once
struct GPOINT
{
int x;
int y;
GPOINT(int x,int y):x(x),y(y){};
friend bool operator <(GPOINT p1,GPOINT p2)
{
return p1.x>p2.x;
}
};
class GaussFit
{
public:
GaussFit(void);
~GaussFit(void);
void gaussfit( int *arrayx, int *arrayy,int n,float *box,int &miny );
private:
int SVD(float *a,int m,int n,float b[],float x[],float esp);
int gmiv(float a[],int m,int n,float b[],float x[],float aa[],float eps,float u[],float v[],int ka);
int ginv(float a[],int m,int n,float aa[],float eps,float u[],float v[],int ka);
int muav(float a[],int m,int n,float u[],float v[],float eps,int ka);
};
#include "StdAfx.h"
#include "GaussFit.h"
#include <cmath>
#include<queue>
#include<vector>
using namespace std;
GaussFit::GaussFit(void)
{
}
GaussFit::~GaussFit(void)
{
}
void GaussFit::gaussfit( int *arrayx, int *arrayy,int n,float *box,int &miny )
{
float *A1=new float[n*3];
float *B1=new float[n];
float *Pointx=new float[n];
float *Pointy=new float[n];
int maxy=0,midx,minx;
miny=INT_MAX;
const double min_eps = 1e-10;
int i;
priority_queue<GPOINT> gp; //用来对point.x排序
priority_queue<int>py; //用来计算第m小的point.y
int m=n/10;
m=m>0?m:1;
for(i=0;i<n;i++)
{
GPOINT tmp(arrayx[i],arrayy[i]);
gp.push(tmp);
if(py.size()<m)
{
py.push(arrayy[i]);
}
else if(py.top()>arrayy[i])
{
py.pop();
py.push(arrayy[i]);
}
}
miny=py.top(); //用第m小的y代替最小的y,防止异常点
minx=gp.top().x;
for( i=0;i<n;i++)
{
GPOINT tmp=gp.top();
gp.pop();
Pointx[i]=(tmp.x-minx)*1.0;
Pointy[i]=(tmp.y-miny)*1.0;
if(Pointy[i]>maxy)
{
maxy=Pointy[i];
midx=i;
}
else if (Pointy[i]<0)
{
Pointy[i]=0;
}
}
float meany=0;
for(int i=0;i<n;i++)
{
meany+=Pointy[i];
}
meany/=n;
//统计峰值
vector<GPOINT>VG,Vtmp;
for(int i=0;i<n;i++)
{
if(Pointy[i]>meany)
{
GPOINT tmp(Pointx[i],Pointy[i]);
Vtmp.push_back(tmp);
}
else
{
int s1=VG.size(),s2=Vtmp.size();
if(s1<s2)
{
VG.clear();
for(int j=0;j<Vtmp.size();j++)
{
GPOINT tmp1(Vtmp[j].x,Vtmp[j].y);
VG.push_back(tmp1);
}
}
Vtmp.clear();
}
}
int s1=VG.size(),s2=Vtmp.size();
if(s1<s2)
{
VG.clear();
for(int j=0;j<Vtmp.size();j++)
{
GPOINT tmp1(Vtmp[j].x,Vtmp[j].y);
VG.push_back(tmp1);
}
}
//对峰值进行高斯拟合
int size=VG.size();
if(size>0)
{
for( i = 0; i < n; i++ )
{
int step=(i)*3;
float px,py;
px = VG[i%size].x;
py = VG[i%size].y;
B1[i] = log(py);
A1[step] = 1.0;
A1[step + 1] = px;
A1[step + 2] = px * px;
}
float *x1=new float[3];
SVD(A1,n,3,B1,x1,min_eps);
if (x1[2]<0)
{
box[2]=sqrt(-1.0/x1[2]);
box[1]=x1[1]*box[2]*box[2]*0.5;
box[0]=exp(x1[0]+box[1]*box[1]/(box[2]*box[2]));
box[1]+=minx;
}
else
{
box[0]=box[1]=box[2]=-1;
}
delete []x1;
}
else
{
box[0]=box[1]=box[2]=-1;
}
delete []A1;
delete []B1;
delete []Pointx;
delete []Pointy;
}
int GaussFit::SVD(float *a,int m,int n,float b[],float x[],float esp)
{
float *aa;
float *u;
float *v;
aa=new float[n*m];
u=new float[m*m];
v=new float[n*n];
int ka;
int flag;
if(m>n)
{
ka=m+1;
}else
{
ka=n+1;
}
flag=gmiv(a,m,n,b,x,aa,esp,u,v,ka);
delete []aa;
delete []u;
delete []v;
return(flag);
}
int GaussFit::gmiv( float a[],int m,int n,float b[],float x[],float aa[],float eps,float u[],float v[],int ka)
{
int i,j;
i=ginv(a,m,n,aa,eps,u,v,ka);
if (i<0) return(-1);
for (i=0; i<=n-1; i++)
{ x[i]=0.0;
for (j=0; j<=m-1; j++)
x[i]=x[i]+aa[i*m+j]*b[j];
}
return(1);
}
int GaussFit::ginv(float a[],int m,int n,float aa[],float eps,float u[],float v[],int ka)
{
// int muav(float a[],int m,int n,float u[],float v[],float eps,int ka);
int i,j,k,l,t,p,q,f;
i=muav(a,m,n,u,v,eps,ka);
if (i<0) return(-1);
j=n;
if (m<n) j=m;
j=j-1;
k=0;
while ((k<=j)&&(a[k*n+k]!=0.0)) k=k+1;
k=k-1;
for (i=0; i<=n-1; i++)
for (j=0; j<=m-1; j++)
{ t=i*m+j; aa[t]=0.0;
for (l=0; l<=k; l++)
{ f=l*n+i; p=j*m+l; q=l*n+l;
aa[t]=aa[t]+v[f]*u[p]/a[q];
}
}
return(1);
}
int GaussFit::muav(float a[],int m,int n,float u[],float v[],float eps,int ka)
{ int i,j,k,l,it,ll,kk,ix,iy,mm,nn,iz,m1,ks;
float d,dd,t,sm,sm1,em1,sk,ek,b,c,shh,fg[2],cs[2];
float *s,*e,*w;
//void ppp();
// void sss();
void ppp(float a[],float e[],float s[],float v[],int m,int n);
void sss(float fg[],float cs[]);
s=(float *) malloc(ka*sizeof(float));
e=(float *) malloc(ka*sizeof(float));
w=(float *) malloc(ka*sizeof(float));
it=60; k=n;
if (m-1<n) k=m-1;
l=m;
if (n-2<m) l=n-2;
if (l<0) l=0;
ll=k;
if (l>k) ll=l;
if (ll>=1)
{ for (kk=1; kk<=ll; kk++)
{ if (kk<=k)
{ d=0.0;
for (i=kk; i<=m; i++)
{ ix=(i-1)*n+kk-1; d=d+a[ix]*a[ix];}
s[kk-1]=(float)sqrt(d);
if (s[kk-1]!=0.0)
{ ix=(kk-1)*n+kk-1;
if (a[ix]!=0.0)
{ s[kk-1]=(float)fabs(s[kk-1]);
if (a[ix]<0.0) s[kk-1]=-s[kk-1];
}
for (i=kk; i<=m; i++)
{ iy=(i-1)*n+kk-1;
a[iy]=a[iy]/s[kk-1];
}
a[ix]=1.0f+a[ix];
}
s[kk-1]=-s[kk-1];
}
if (n>=kk+1)
{ for (j=kk+1; j<=n; j++)
{ if ((kk<=k)&&(s[kk-1]!=0.0))
{ d=0.0;
for (i=kk; i<=m; i++)
{ ix=(i-1)*n+kk-1;
iy=(i-1)*n+j-1;
d=d+a[ix]*a[iy];
}
d=-d/a[(kk-1)*n+kk-1];
for (i=kk; i<=m; i++)
{ ix=(i-1)*n+j-1;
iy=(i-1)*n+kk-1;
a[ix]=a[ix]+d*a[iy];
}
}
e[j-1]=a[(kk-1)*n+j-1];
}
}
if (kk<=k)
{ for (i=kk; i<=m; i++)
{ ix=(i-1)*m+kk-1; iy=(i-1)*n+kk-1;
u[ix]=a[iy];
}
}
if (kk<=l)
{ d=0.0;
for (i=kk+1; i<=n; i++)
d=d+e[i-1]*e[i-1];
e[kk-1]=(float)sqrt(d);
if (e[kk-1]!=0.0)
{ if (e[kk]!=0.0)
{ e[kk-1]=(float)fabs(e[kk-1]);
if (e[kk]<0.0) e[kk-1]=-e[kk-1];
}
for (i=kk+1; i<=n; i++)
e[i-1]=e[i-1]/e[kk-1];
e[kk]=1.0f+e[kk];
}
e[kk-1]=-e[kk-1];
if ((kk+1<=m)&&(e[kk-1]!=0.0))
{ for (i=kk+1; i<=m; i++) w[i-1]=0.0;
for (j=kk+1; j<=n; j++)
for (i=kk+1; i<=m; i++)
w[i-1]=w[i-1]+e[j-1]*a[(i-1)*n+j-1];
for (j=kk+1; j<=n; j++)
for (i=kk+1; i<=m; i++)
{ ix=(i-1)*n+j-1;
a[ix]=a[ix]-w[i-1]*e[j-1]/e[kk];
}
}
for (i=kk+1; i<=n; i++)
v[(i-1)*n+kk-1]=e[i-1];
}
}
}
mm=n;
if (m+1<n) mm=m+1;
if (k<n) s[k]=a[k*n+k];
if (m<mm) s[mm-1]=0.0;
if (l+1<mm) e[l]=a[l*n+mm-1];
e[mm-1]=0.0;
nn=m;
if (m>n) nn=n;
if (nn>=k+1)
{ for (j=k+1; j<=nn; j++)
{ for (i=1; i<=m; i++)
u[(i-1)*m+j-1]=0.0;
u[(j-1)*m+j-1]=1.0;
}
}
if (k>=1)
{ for (ll=1; ll<=k; ll++)
{ kk=k-ll+1; iz=(kk-1)*m+kk-1;
if (s[kk-1]!=0.0)
{ if (nn>=kk+1)
for (j=kk+1; j<=nn; j++)
{ d=0.0;
for (i=kk; i<=m; i++)
{ ix=(i-1)*m+kk-1;
iy=(i-1)*m+j-1;
d=d+u[ix]*u[iy]/u[iz];
}
d=-d;
for (i=kk; i<=m; i++)
{ ix=(i-1)*m+j-1;
iy=(i-1)*m+kk-1;
u[ix]=u[ix]+d*u[iy];
}
}
for (i=kk; i<=m; i++)
{ ix=(i-1)*m+kk-1; u[ix]=-u[ix];}
u[iz]=1.0f+u[iz];
if (kk-1>=1)
for (i=1; i<=kk-1; i++)
u[(i-1)*m+kk-1]=0.0;
}
else
{ for (i=1; i<=m; i++)
u[(i-1)*m+kk-1]=0.0;
u[(kk-1)*m+kk-1]=1.0;
}
}
}
for (ll=1; ll<=n; ll++)
{ kk=n-ll+1; iz=kk*n+kk-1;
if ((kk<=l)&&(e[kk-1]!=0.0))
{ for (j=kk+1; j<=n; j++)
{ d=0.0;
for (i=kk+1; i<=n; i++)
{ ix=(i-1)*n+kk-1; iy=(i-1)*n+j-1;
d=d+v[ix]*v[iy]/v[iz];
}
d=-d;
for (i=kk+1; i<=n; i++)
{ ix=(i-1)*n+j-1; iy=(i-1)*n+kk-1;
v[ix]=v[ix]+d*v[iy];
}
}
}
for (i=1; i<=n; i++)
v[(i-1)*n+kk-1]=0.0;
v[iz-n]=1.0;
}
for (i=1; i<=m; i++)
for (j=1; j<=n; j++)
a[(i-1)*n+j-1]=0.0;
m1=mm; it=60;
while (1==1)
{ if (mm==0)
{ ppp(a,e,s,v,m,n);
free(s); free(e); free(w); return(1);
}
if (it==0)
{ ppp(a,e,s,v,m,n);
free(s); free(e); free(w); return(-1);
}
kk=mm-1;
while ((kk!=0)&&(fabs(e[kk-1])!=0.0))
{ d=(float)(fabs(s[kk-1])+fabs(s[kk]));
dd=(float)fabs(e[kk-1]);
if (dd>eps*d) kk=kk-1;
else e[kk-1]=0.0;
}
if (kk==mm-1)
{ kk=kk+1;
if (s[kk-1]<0.0)
{ s[kk-1]=-s[kk-1];
for (i=1; i<=n; i++)
{ ix=(i-1)*n+kk-1; v[ix]=-v[ix];}
}
while ((kk!=m1)&&(s[kk-1]<s[kk]))
{ d=s[kk-1]; s[kk-1]=s[kk]; s[kk]=d;
if (kk<n)
for (i=1; i<=n; i++)
{ ix=(i-1)*n+kk-1; iy=(i-1)*n+kk;
d=v[ix]; v[ix]=v[iy]; v[iy]=d;
}
if (kk<m)
for (i=1; i<=m; i++)
{ ix=(i-1)*m+kk-1; iy=(i-1)*m+kk;
d=u[ix]; u[ix]=u[iy]; u[iy]=d;
}
kk=kk+1;
}
it=60;
mm=mm-1;
}
else
{ ks=mm;
while ((ks>kk)&&(fabs(s[ks-1])!=0.0))
{ d=0.0;
if (ks!=mm) d=d+(float)fabs(e[ks-1]);
if (ks!=kk+1) d=d+(float)fabs(e[ks-2]);
dd=(float)fabs(s[ks-1]);
if (dd>eps*d) ks=ks-1;
else s[ks-1]=0.0;
}
if (ks==kk)
{ kk=kk+1;
d=(float)fabs(s[mm-1]);
t=(float)fabs(s[mm-2]);
if (t>d) d=t;
t=(float)fabs(e[mm-2]);
if (t>d) d=t;
t=(float)fabs(s[kk-1]);
if (t>d) d=t;
t=(float)fabs(e[kk-1]);
if (t>d) d=t;
sm=s[mm-1]/d; sm1=s[mm-2]/d;
em1=e[mm-2]/d;
sk=s[kk-1]/d; ek=e[kk-1]/d;
b=((sm1+sm)*(sm1-sm)+em1*em1)/2.0f;
c=sm*em1; c=c*c; shh=0.0;
if ((b!=0.0)||(c!=0.0))
{ shh=(float)sqrt(b*b+c);
if (b<0.0) shh=-shh;
shh=c/(b+shh);
}
fg[0]=(sk+sm)*(sk-sm)-shh;
fg[1]=sk*ek;
for (i=kk; i<=mm-1; i++)
{ sss(fg,cs);
if (i!=kk) e[i-2]=fg[0];
fg[0]=cs[0]*s[i-1]+cs[1]*e[i-1];
e[i-1]=cs[0]*e[i-1]-cs[1]*s[i-1];
fg[1]=cs[1]*s[i];
s[i]=cs[0]*s[i];
if ((cs[0]!=1.0)||(cs[1]!=0.0))
for (j=1; j<=n; j++)
{ ix=(j-1)*n+i-1;
iy=(j-1)*n+i;
d=cs[0]*v[ix]+cs[1]*v[iy];
v[iy]=-cs[1]*v[ix]+cs[0]*v[iy];
v[ix]=d;
}
sss(fg,cs);
s[i-1]=fg[0];
fg[0]=cs[0]*e[i-1]+cs[1]*s[i];
s[i]=-cs[1]*e[i-1]+cs[0]*s[i];
fg[1]=cs[1]*e[i];
e[i]=cs[0]*e[i];
if (i<m)
if ((cs[0]!=1.0)||(cs[1]!=0.0))
for (j=1; j<=m; j++)
{ ix=(j-1)*m+i-1;
iy=(j-1)*m+i;
d=cs[0]*u[ix]+cs[1]*u[iy];
u[iy]=-cs[1]*u[ix]+cs[0]*u[iy];
u[ix]=d;
}
}
e[mm-2]=fg[0];
it=it-1;
}
else
{ if (ks==mm)
{ kk=kk+1;
fg[1]=e[mm-2]; e[mm-2]=0.0;
for (ll=kk; ll<=mm-1; ll++)
{ i=mm+kk-ll-1;
fg[0]=s[i-1];
sss(fg,cs);
s[i-1]=fg[0];
if (i!=kk)
{ fg[1]=-cs[1]*e[i-2];
e[i-2]=cs[0]*e[i-2];
}
if ((cs[0]!=1.0)||(cs[1]!=0.0))
for (j=1; j<=n; j++)
{ ix=(j-1)*n+i-1;
iy=(j-1)*n+mm-1;
d=cs[0]*v[ix]+cs[1]*v[iy];
v[iy]=-cs[1]*v[ix]+cs[0]*v[iy];
v[ix]=d;
}
}
}
else
{ kk=ks+1;
fg[1]=e[kk-2];
e[kk-2]=0.0;
for (i=kk; i<=mm; i++)
{ fg[0]=s[i-1];
sss(fg,cs);
s[i-1]=fg[0];
fg[1]=-cs[1]*e[i-1];
e[i-1]=cs[0]*e[i-1];
if ((cs[0]!=1.0)||(cs[1]!=0.0))
for (j=1; j<=m; j++)
{ ix=(j-1)*m+i-1;
iy=(j-1)*m+kk-2;
d=cs[0]*u[ix]+cs[1]*u[iy];
u[iy]=-cs[1]*u[ix]+cs[0]*u[iy];
u[ix]=d;
}
}
}
}
}
}
free(s);free(e);free(w);
return(1);
}
void ppp(float a[],float e[],float s[],float v[],int m,int n)
{ int i,j,p,q;
float d;
if (m>=n) i=n;
else i=m;
for (j=1; j<=i-1; j++)
{ a[(j-1)*n+j-1]=s[j-1];
a[(j-1)*n+j]=e[j-1];
}
a[(i-1)*n+i-1]=s[i-1];
if (m<n) a[(i-1)*n+i]=e[i-1];
for (i=1; i<=n-1; i++)
for (j=i+1; j<=n; j++)
{ p=(i-1)*n+j-1; q=(j-1)*n+i-1;
d=v[p]; v[p]=v[q]; v[q]=d;
}
return;
}
void sss(float fg[],float cs[])
{ float r,d;
if ((fabs(fg[0])+fabs(fg[1]))==0.0)
{ cs[0]=1.0; cs[1]=0.0; d=0.0;}
else
{ d=(float)sqrt(fg[0]*fg[0]+fg[1]*fg[1]);
if (fabs(fg[0])>fabs(fg[1]))
{ d=(float)fabs(d);
if (fg[0]<0.0) d=-d;
}
if (fabs(fg[1])>=fabs(fg[0]))
{ d=(float)fabs(d);
if (fg[1]<0.0) d=-d;
}
cs[0]=fg[0]/d; cs[1]=fg[1]/d;
}
r=1.0;
if (fabs(fg[0])>fabs(fg[1])) r=cs[1];
else
if (cs[0]!=0.0) r=1.0f/cs[0];
fg[0]=d; fg[1]=r;
return;
}
原文地址:http://blog.csdn.net/alop_daoyan/article/details/42555213