题目链接:
http://blog.csdn.net/xiaoranlr/article/details/43963933
1. 计算逆波兰式
题目要求如下:
["2","1", "+", "3", "*"] -> ((2 + 1) * 3)-> 9
["4","13", "5", "/", "+"] -> (4 + (13 /5)) -> 6
也就是说给定一个逆波兰式数组,计算其结果。
如:
输入:["2","1", "+", "3", "*"]
输出:9
显然我们可以考虑使用栈。
思路如下:
遍历输入数组,当数组成员为数字时,则入栈;当数组成员为运算符时,取出栈中的数字进行运算。
数组遍历完成后栈中留下的数字即为计算结果。
code:
import java.util.Stack;
public class test {
public static int GetResult(String[] tokens) {
int returnValue = 0;
String operators = "+-*/";
Stack<String> stack = new Stack<String>();
for (String t : tokens) {
// 若t不是operators字符串中的某个字符,则说明t是数字
if (!operators.contains(t)) {
stack.push(t);
} else {
int a = Integer.valueOf(stack.pop());
int b = Integer.valueOf(stack.pop());
switch (t) {
case "+":
stack.push(String.valueOf(a + b));
break;
case "-":
stack.push(String.valueOf(a - b));
break;
case "*":
stack.push(String.valueOf(a * b));
break;
case "/":
stack.push(String.valueOf(a / b));
break;
}
}
}
returnValue = Integer.valueOf(stack.pop());
return returnValue;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
String[] tokens = new String[] { "2", "1", "+", "3", "*" };
int Revresult = GetResult(tokens);
System.out.println("Reuslt:" + Revresult);
}
}
2.求回文字串
最简单的方法为遍历字符串,求出长度最大的回文:
public class test {
public static String longestPalindrome(String s) {
int maxPalinLength = 0;
String longestPalindrome = null;
int length = s.length();
// check all possible sub strings
for (int i = 0; i < length; i++) {
for (int j = i + 1; j < length; j++) {
int len = j - i;
String curr = s.substring(i, j + 1);
if (isPalindrome(curr)) {
if (len > maxPalinLength) {
longestPalindrome = curr;
maxPalinLength = len;
}
}
}
}
return longestPalindrome;
}
public static boolean isPalindrome(String s) {
for (int i = 0; i < s.length() - 1; i++) {
if (s.charAt(i) != s.charAt(s.length() - 1 - i)) {
return false;
}
}
return true;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
String tokens = "aabcdc";
String Revresult = longestPalindrome(tokens);
System.out.println("Reuslt:" + Revresult);
}
}
第二种解法为动态规划法:建立一个二维表,其中t[i][j]用于表示字符串t中从i到j的子串是否为回文(1表示是回文,0表示非回文)。
1.初始化:建立长宽为t.length的二维矩阵,将对角线t[i][i]置1
2.若两两相邻的字符相等,则也为回文,因此检查相邻字符,即为t[i][i+1]赋值
3.若t[i+1][j-1] == 1 && s.charAt(i) == s.charAt(j),则t[i][j] == 1
public class test {
public static String longestPalindrome2(String s) {
if (s == null)
return null;
if (s.length() <= 1)
return s;
int maxLen = 0;
String longestStr = null;
int length = s.length();
int[][] table = new int[length][length];
for (int i = 0; i < length; i++) {
table[i][i] = 1;
}
for (int i = 0; i <= length - 2; i++) {
if (s.charAt(i) == s.charAt(i + 1)) {
table[i][i + 1] = 1;
longestStr = s.substring(i, i + 2);
}
}
for (int l = 3; l <= length; l++) {
for (int i = 0; i <= length - l; i++) {
int j = i + l - 1;
if (s.charAt(i) == s.charAt(j)) {
table[i][j] = table[i + 1][j - 1];
if (table[i][j] == 1 && l > maxLen)
longestStr = s.substring(i, j + 1);
} else {
table[i][j] = 0;
}
}
}
return longestStr;
}
public static void main(String[] args) {
// TODO Auto-generated method stub
String tokens = "aabcdc";
String Revresult = longestPalindrome2(tokens);
System.out.println("Reuslt:" + Revresult);
}
}
最后还有一个:
构造helper函数:public String helper(String s, int begin, int end),其功能为求出以begin、end为中心的回文的字串,之后遍历字符串中所有位。
public class test {
public static String longestPalindrome(String s) {
if (s.isEmpty()) {
return null;
}
if (s.length() == 1) {
return s;
}
String longest = s.substring(0, 1);
for (int i = 0; i < s.length(); i++) {
// get longest palindrome with center of i
String tmp = helper(s, i, i);
if (tmp.length() > longest.length()) {
longest = tmp;
}
// get longest palindrome with center of i, i+1
tmp = helper(s, i, i + 1);
if (tmp.length() > longest.length()) {
longest = tmp;
}
}
return longest;
}
// Given a center, either one letter or two letter,
// Find longest palindrome
public static String helper(String s, int begin, int end) {
while (begin >= 0 && end <= s.length() - 1
&& s.charAt(begin) == s.charAt(end)) {
begin--;
end++;
}
return s.substring(begin + 1, end);
}
public static void main(String[] args) {
// TODO Auto-generated method stub
String tokens = "aabcdc";
String Revresult = longestPalindrome(tokens);
System.out.println("Reuslt:" + Revresult);
}
}
原文地址:http://blog.csdn.net/miaoyunzexiaobao/article/details/44015523