初次接触死锁的概念是大学的一门课程《操作系统原理》中描述的“哲学家进餐”问题。操作系统中,由于各个进程共享系统资源而可能出现死锁问题。同样java多线程环境下,也存在资源共享导致的死锁问题。当一组java线程发生死锁时,程序有可能就此阻塞,而无法正常结束。Java应用程序中,我们使用加锁机制来确保线程的安全,但是如果过度地使用加锁,可能导致锁顺序死锁问题。
整理《java并发编程实践》一书中锁顺序死锁的分析,及代码示例验证如下。
程序中需要同时获取多个锁的时候,加锁的顺序不同,可能会导致死锁问题。一种简单的锁顺序死锁的代码如下:
public class LeftRightDeadLock {
private final Object left = new Object();
private final Object right = new Object();
public void leftRight(){
synchronized (left) {
synchronized (right) {
//doSomethoing();
}
}
}
public void rightLeft(){
synchronized (right) {
synchronized (left) {
//doSomethoing();
}
}
}
} 以上代码存在死锁风险:当一个线程调用leftRight方法获取了left锁后,而另一个线程同时调用了rightLeft方法获取了right锁,那么此时他们都会陷入等待另一个锁的阻塞过程,而导致死锁。因为他们的操作是交错进行的,而加在相同对象的锁的顺序也是交错的,这就容易导致死锁的发生。破解的方法就是:所有的线程以固定的顺序来获取相同的锁,那么程序中就不会出现锁顺序死锁问题。
顶层金额抽象类Amount,实现comparable以便转账之前的数据校验操作;它的子类DallarAmount。
/**
* 顶层金额抽象类:包含币种和余额两个属性
* @author bh
*/
public abstract class Amount implements Comparable<Amount>{
public abstract BigDecimal getBalance();
public abstract void setBalance(BigDecimal balance);
public abstract Currency getCurrency();
@Override
public int compareTo(Amount o) {
if(o==null){
throw new NullPointerException("null arg.");
}
if(this.getBalance()==null||o.getBalance()==null){
throw new NullPointerException("null arg.");
}
return this.getBalance().compareTo(o.getBalance());
}
}/**
* 美元类
* @author bh
*/
public class DollarAmount extends Amount{
private BigDecimal balance;
private Currency currency = Currency.getInstance(Locale.US);
public DollarAmount(BigDecimal balance){
this.balance = balance;
}
public BigDecimal getBalance() {
return balance;
}
public void setAmount(BigDecimal amount) {
this.balance = amount;
}
public Currency getCurrency() {
return currency;
}
public void setBalance(BigDecimal balance) {
this.balance = balance;
}
} Account类,提供账户的借贷方法。
/**
* 账户类:包括金额,借贷及获取余额方法
* @author bh
*/
public class Account {
private String id;
private Amount balance;
public Account(Amount amount,String id){
this.balance = amount;
this.id = id;
}
public Amount getBalance() {
return balance;
}
public void setBalance(Amount balance) {
this.balance = balance;
}
public void debit(Amount amount){
if(this.balance==null||amount==null||amount.getBalance()==null){
return;
}
System.out.println(id+" 支出金额"+amount.getBalance());
//修正账户余额:本账户减去借方金额
BigDecimal current = this.balance.getBalance();
BigDecimal now = current.subtract(amount.getBalance());
this.balance.setBalance(now);
}
public void credit(Amount amount){
if(this.balance==null||amount==null||amount.getBalance()==null){
return;
}
System.out.println(id+" 收入金额"+amount.getBalance());
//修正账户余额:本账户加贷方金额
BigDecimal current = this.balance.getBalance();
BigDecimal now = current.add(amount.getBalance());
this.balance.setBalance(now);
}
public String getId() {
return id;
}
public void setId(String id) {
this.id = id;
}
} 转账功能提供者,在执行转账之前获取两个账户的锁:
/**
* 同时获取两个账户的锁
* @author bh
*/
public class AccountHelper {
public void transferMoney(final Account fromAcct,
final Account toAcct,
final Amount amount){
//参数校验
if(fromAcct==null||toAcct==null||amount==null){
throw new IllegalArgumentException("null arg.");
}
//余额校验
if(fromAcct.getBalance().compareTo(amount)<0){
throw new IllegalArgumentException(fromAcct.getId()+"账户余额不足");
}
synchronized (fromAcct) {
synchronized (toAcct) {
this.transfer(fromAcct, toAcct, amount);
}
}
}
//transfer对两个账户的操作必须是原子的完成
private void transfer(final Account fromAcct,
final Account toAcct,
final Amount amount){
System.out.println("Thread "+Thread.currentThread().getName()+" do transfer.");
fromAcct.debit(amount);
toAcct.credit(amount);
}
} 上述代码看似没有问题,但是它确有死锁的问题,虽然线程看似以相同的加锁方式先对from加锁,再对to账户加锁,但事实上锁的顺序是动态的,取决于传递给这个方法的参数的顺序,而这些参数的顺序又取决于外部输入。编写测试代码,同时启动四个线程交替执行transferMoney方法,而参数传递顺序则以相反的顺序。代码如下:
public class MainTest {
public static void main(String[] args) {
Amount amFromAcc = new DollarAmount(new BigDecimal(2000));
Amount amToAcc = new DollarAmount(new BigDecimal(1000));
final AccountHelper h = new AccountHelper();
final Account fromAcc = new Account(amFromAcc,"zhang_3");
final Account toAcc = new Account(amToAcc,"wang_5");
final Amount amToTran = new DollarAmount(new BigDecimal(1));
Thread t1 = new Thread(new Runnable(){
@Override
public void run() {
h.transferMoney(fromAcc, toAcc, amToTran);
}
});
Thread t4 = new Thread(new Runnable(){
@Override
public void run() {
h.transferMoney(fromAcc, toAcc, amToTran);
}
});
Thread t2 = new Thread(new Runnable(){
@Override
public void run() {
h.transferMoney(toAcc, fromAcc, amToTran);
}
});
Thread t3 = new Thread(new Runnable(){
@Override
public void run() {
h.transferMoney(toAcc, fromAcc, amToTran);
}
});
t1.start();
t2.start();
t3.start();
t4.start();
}
} 反复执行该方法,前三次恰巧能够正常运行;但是第四次执行的时候,就遭遇了死锁问题,只有两个线程顺序完成了操作,而另外两个线程陷入死锁状态,这个程序一直无法结束,测试结果如下:
因为我们无法控制参数的顺序,所以必须定义一种固定的锁的顺序,使得程序的锁定顺序不受参数的影响。该书中给出的解决办法是:比较对象的hashCode,以此固定一种顺序,当两个对象拥有相同的哈希值时,再使用加时赛锁固定加锁的顺序。AccountHelper破解动态顺序死锁的代码如下:
/**
* 根据某种规则设置锁的获取顺序,避免锁顺序死锁问题
* @author bh
*
*/
public class AccountHelper {
//加时赛锁
private final Object tieLock = new Object();
public void transferMoney(final Account fromAcct,
final Account toAcct,
final Amount amount){
//参数校验
if(fromAcct==null||toAcct==null||amount==null){
throw new IllegalArgumentException("null arg.");
}
//余额校验
if(fromAcct.getBalance().compareTo(amount)<0){
throw new IllegalArgumentException(fromAcct.getId()+"账户余额不足");
}
//根据对象的hash值随机设置加锁顺序
int fromHash = System.identityHashCode(fromAcct);
int toHash = System.identityHashCode(toAcct);
if(fromHash<toHash){
synchronized (fromAcct) {
synchronized (toAcct) {
this.transfer(fromAcct, toAcct, amount);
}
}
}else if(fromHash>toHash){
synchronized (toAcct) {
synchronized (fromAcct) {
this.transfer(fromAcct, toAcct, amount);
}
}
}else{
//碰巧相对时,先获取加时赛锁
synchronized (tieLock) {
synchronized (fromAcct) {
synchronized (toAcct) {
this.transfer(fromAcct, toAcct, amount);
}
}
}
}
}
//transfer对两个账户的操作必须是原子的完成
private void transfer(final Account fromAcct,
final Account toAcct,
final Amount amount){
System.out.println("Thread "+Thread.currentThread().getName()+" do transfer.");
fromAcct.debit(amount);
toAcct.credit(amount);
}
}
原文地址:http://blog.csdn.net/wojiushiwo945you/article/details/45092501