标签:
Time Limit: 30000/15000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)
Total Submission(s): 194 Accepted Submission(s): 63
题目大意:给你n个山洞,m1条无向隧道,m2条有向隧道,要你从一个山洞出发,经过除出发点外至少一个山洞回到出发点,一条隧道经过后会坍塌,问是否存在满足要求的路径。
解题思路:
首先对于所有的无向边,我们使用并查集将两边的点并起来。
若一条边未合并之前,两端的点已经处于同一个集合了,那么说明必定存在可行的环(因为这两个点处于同一个并查集集合中,那么它们之间至少存在一条路径) 如果上一步没有判断出环,那么仅靠无向边是找不到环的 考虑到,处于同一个并查集集合中的点之间必定存在一条路径互达,因此将一个集合的点合并之后(利用缩点),原问题等价于在新生成的有向图中是否有环 我们知道,有向无环图必定存在拓扑序,因此只需使用拓扑排序判定即可 时间复杂度O(N+M1+M2)
#include<stdio.h>
#include<string.h>
#include<vector>
#include<iostream>
#include<queue>
#include<algorithm>
using namespace std;
int n,m1,m2;
const int maxn=1e6+666;
int fa[maxn]; //并查集的father数组
bool flag[maxn]; //标记缩点、不重复加入队列
int indeg[maxn]; //记录入度
vector<int>Mp[maxn];//存有向边
int Find(int x){
return fa[x]=fa[x]==x?x:Find(fa[x]);
}
bool Union(int x,int y){
int fx,fy;
fx=Find(x);
fy=Find(y);
if(fx<fy){
fa[fy]=fx;
}else if(fx>fy){
fa[fx]=fy;
}else{ //如果该无向边的两端同属一个集合,加入该边后,肯定形成环
return true;
}
return false;
}
bool u_f_set(){
for(int i=1;i<=n;i++) //初始化fa
fa[i]=i;
bool cir=0; //是否形成环
for(int i=0;i<m1;i++){
int u,v;
scanf("%d %d",&u,&v);
if(!cir&&Union(u,v)) //如果形成环,只需输入,不操作
cir=1;
}
return cir;
}
bool topo_sort(){
for(int i=0;i<=n;i++)
Mp[i].clear();
memset(indeg,0,sizeof(indeg));
memset(flag,0,sizeof(flag));
bool cir=0; //初始化
for(int i=0;i<m2;i++){
int u,v,fu,fv;
scanf("%d%d",&u,&v);
if(cir==1) //如果已经有环,只需输入
continue;
fu=Find(u);
fv=Find(v);
if(fu==fv){ //如果有向边两个端点在一个集合(缩点)中,必成环
cir=1;
}else{
Mp[fu].push_back(fv); //存有向边
indeg[fv]++; //该集合(缩点)入度加一
}
}
if(cir==1){
return 1;
}else{
queue<int>Q;
while(!Q.empty())
Q.pop();
int cnt_c=0;
for(int i=1;i<=n;i++){
int i_f=Find(i);
if(i_f==i){
cnt_c++; //记录所有集合(缩点)个数
}
if(indeg[i_f]==0&&flag[i_f]==0){ //该集合(缩点)入度为零,且未加入队列
Q.push(i_f);
flag[i_f]=1;
}
}
int cnt=0;
while(!Q.empty()){ //bfs_topo排序
int u=Q.front();
cnt++; //记录拓扑排序排了多少个集合(缩点)
Q.pop();
for(int i=0;i<Mp[u].size();i++){
int j=Mp[u][i];
indeg[j]--;
if(indeg[j]==0&&flag[j]==0){
Q.push(j);
flag[j]=1;
}
}
}
if(cnt_c==cnt){ //如果总的集合个数等于拓扑排序的集合个数,说明无环
return false;
}else{
return true;
}
}
}
int main(){
int t;
scanf("%d",&t);
while(t--){
scanf("%d%d%d",&n,&m1,&m2);
if(u_f_set()){
for(int i=0;i<m2;i++){
int u,v;
scanf("%d%d",&u,&v);
}printf("YES\n");
}
else{
if(topo_sort()) printf("YES\n");
else printf("NO\n");
}
}
}
/*
55
3 1 1
1 3
3 2
NO
4 2 2
1 2
2 3
4 3
4 1
NO
7 3 4
2 1
1 7
3 4
6 3
5 6
4 5
7 6
YES
4 1 3
4 1
3 2
4 3
4 1
YES
7 2 3
1 2
2 3
4 5
5 6
6 4
YES
9 4 4
1 2
1 7
3 4
8 9
7 6
5 6
4 5
6 3
YES
*/
HDU 5222 ——Exploration——————【并查集+拓扑排序判有向环】
标签:
原文地址:http://www.cnblogs.com/chengsheng/p/4474125.html