标签:
本文的目标有两个:
1、学会使用9大Java开源中文分词器
2、对比分析9大Java开源中文分词器的分词效果
9大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比不同分词器结果
* @author 杨尚川
*/
public interface WordSegmenter {
/**
* 获取文本的所有分词结果
* @param text 文本
* @return 所有的分词结果,去除重复
*/
default public Set<String> seg(String text) {
return segMore(text).values().stream().collect(Collectors.toSet());
}
/**
* 获取文本的所有分词结果
* @param text 文本
* @return 所有的分词结果,KEY 为分词器模式,VALUE 为分词器结果
*/
public Map<String, String> segMore(String text);
}
从上面的定义我们知道,在Java中,同样的方法名称和参数,但是返回值不同,这种情况不可以使用重载。
这两个方法的区别在于返回值,每一个分词器都可能有多种分词模式,每种模式的分词结果都可能不相同,第一个方法忽略分词器模式,返回所有模式的所有不重复分词结果,第二个方法返回每一种分词器模式及其对应的分词结果。
在这里,需要注意的是我们使用了Java8中的新特性默认方法,并使用stream把一个map的value转换为不重复的集合。
下面我们利用这9大分词器来实现这个接口:
1、word分词器
@Override
public Map<String, String> segMore(String text) {
Map<String, String> map = new HashMap<>();
for(SegmentationAlgorithm segmentationAlgorithm : SegmentationAlgorithm.values()){
map.put(segmentationAlgorithm.getDes(), seg(text, segmentationAlgorithm));
}
return map;
}
private static String seg(String text, SegmentationAlgorithm segmentationAlgorithm) {
StringBuilder result = new StringBuilder();
for(Word word : WordSegmenter.segWithStopWords(text, segmentationAlgorithm)){
result.append(word.getText()).append(" ");
}
return result.toString();
}
2、Ansj分词器
@Override
public Map<String, String> segMore(String text) {
Map<String, String> map = new HashMap<>();
StringBuilder result = new StringBuilder();
for(Term term : BaseAnalysis.parse(text)){
result.append(term.getName()).append(" ");
}
map.put("BaseAnalysis", result.toString());
result.setLength(0);
for(Term term : ToAnalysis.parse(text)){
result.append(term.getName()).append(" ");
}
map.put("ToAnalysis", result.toString());
result.setLength(0);
for(Term term : NlpAnalysis.parse(text)){
result.append(term.getName()).append(" ");
}
map.put("NlpAnalysis", result.toString());
result.setLength(0);
for(Term term : IndexAnalysis.parse(text)){
result.append(term.getName()).append(" ");
}
map.put("IndexAnalysis", result.toString());
return map;
}
3、Stanford分词器
private static CRFClassifier<CoreLabel> pkuCRFClassifier = null;
private static CRFClassifier<CoreLabel> ctbCRFClassifier = null;
static{
try{
String pku = "lib/stanford-segmenter-3.3.1/data/pku.gz";
String ctb = "lib/stanford-segmenter-3.3.1/data/ctb.gz";
//github单文件最大不能超过100m,所以分割文件存放,使用时再合并
//split(pku, 2);
//split(ctb, 2);
if(!Files.exists(Paths.get(pku))){
merge(pku, pku, 2);
}
if(!Files.exists(Paths.get(ctb))){
merge(ctb, ctb, 2);
}
pkuCRFClassifier = getCRFClassifier("pku");
ctbCRFClassifier = getCRFClassifier("ctb");
}catch(Exception e){
e.printStackTrace();
}
}
private static CRFClassifier<CoreLabel> getCRFClassifier(String lang){
Properties props = new Properties();
props.setProperty("sighanCorporaDict", "lib/stanford-segmenter-3.3.1/data");
props.setProperty("NormalizationTable", "lib/stanford-segmenter-3.3.1/data/norm.simp.utf8");
props.setProperty("normTableEncoding", "UTF-8");
// below is needed because CTBSegDocumentIteratorFactory accesses it
props.setProperty("serDictionary","lib/stanford-segmenter-3.3.1/data/dict-chris6.ser.gz");
props.setProperty("inputEncoding", "UTF-8");
props.setProperty("sighanPostProcessing", "true");
final CRFClassifier<CoreLabel> segmenter = new CRFClassifier<>(props);
segmenter.loadClassifierNoExceptions("lib/stanford-segmenter-3.3.1/data/"+lang+".gz", props);
return segmenter;
}
private static void split(String file, int splitCount) throws Exception {
long length;
long size;
try (RandomAccessFile raf = new RandomAccessFile(new File(file), "r")) {
length = raf.length();
size = length / splitCount;
}
long offset = 0L;
for (int i = 0; i < splitCount - 1; i++){
long fbegin = offset;
long fend = (i + 1) * size;
offset = write(file, i, fbegin, fend);
}
if (length - offset > 0){
write(file, splitCount - 1, offset, length);
}
}
private static void merge(String file, String splitFiles, int splitCount) throws Exception {
try (RandomAccessFile raf = new RandomAccessFile(new File(file), "rw")) {
for (int i = 0; i < splitCount; i++) {
try (RandomAccessFile reader = new RandomAccessFile(new File(splitFiles + "_" + i), "r")) {
byte[] b = new byte[4096];
int n = -1;
while ((n = reader.read(b)) != -1) {
raf.write(b, 0, n);
}
}
}
}
}
private static long write(String file, int index, long begin, long end) throws Exception {
long endPointer;
try (RandomAccessFile in = new RandomAccessFile(new File(file), "r");
RandomAccessFile out = new RandomAccessFile(new File(file + "_" + index), "rw")) {
byte[] b = new byte[4096];
int n = 0;
in.seek(begin);
while (in.getFilePointer() <= end && (n = in.read(b)) != -1) {
out.write(b, 0, n);
} endPointer = in.getFilePointer();
}
return endPointer;
}
@Override
public Map<String, String> segMore(String text) {
Map<String, String> map = new HashMap<>();
map.put("Stanford Beijing University segmentation", seg(pkuCRFClassifier, text));
map.put("Stanford Chinese Treebank segmentation", seg(ctbCRFClassifier, text));
return map;
}
private static String seg(CRFClassifier<CoreLabel> crfClassifier, String text){
StringBuilder result = new StringBuilder();
for(String word : crfClassifier.segmentString(text)){
result.append(word).append(" ");
}
return result.toString();
}
4、FudanNLP分词器
private static CWSTagger tagger = null;
static{
try{
tagger = new CWSTagger("lib/fudannlp_seg.m");
tagger.setEnFilter(true);
}catch(Exception e){
e.printStackTrace();
}
}
@Override
public Map<String, String> segMore(String text) {
Map<String, String> map = new HashMap<>();
map.put("FudanNLP", tagger.tag(text));
return map;
}
5、Jieba分词器
private static final JiebaSegmenter JIEBA_SEGMENTER = new JiebaSegmenter();
@Override
public Map<String, String> segMore(String text) {
Map<String, String> map = new HashMap<>();
map.put("INDEX", seg(text, JIEBA_SEGMENTER, SegMode.INDEX));
map.put("SEARCH", seg(text, JIEBA_SEGMENTER, SegMode.SEARCH));
return map;
}
public String seg(String text, JiebaSegmenter segmenter, SegMode segMode) {
StringBuilder result = new StringBuilder();
for(SegToken token : segmenter.process(text, segMode)){
result.append(token.token).append(" ");
}
return result.toString();
}
6、Jcseg分词器
private static final JcsegTaskConfig CONFIG = new JcsegTaskConfig();
private static final ADictionary DIC = DictionaryFactory.createDefaultDictionary(CONFIG);
static {
CONFIG.setLoadCJKSyn(false);
CONFIG.setLoadCJKPinyin(false);
}
@Override
public Map<String, String> segMore(String text) {
Map<String, String> map = new HashMap<>();
map.put("复杂模式", segText(text, JcsegTaskConfig.COMPLEX_MODE));
map.put("简易模式", segText(text, JcsegTaskConfig.SIMPLE_MODE));
return map;
}
private String segText(String text, int segMode) {
StringBuilder result = new StringBuilder();
try {
ISegment seg = SegmentFactory.createJcseg(segMode, new Object[]{new StringReader(text), CONFIG, DIC});
IWord word = null;
while((word=seg.next())!=null) {
result.append(word.getValue()).append(" ");
}
} catch (Exception ex) {
throw new RuntimeException(ex);
}
return result.toString();
}
7、MMSeg4j分词器
private static final Dictionary DIC = Dictionary.getInstance();
private static final SimpleSeg SIMPLE_SEG = new SimpleSeg(DIC);
private static final ComplexSeg COMPLEX_SEG = new ComplexSeg(DIC);
private static final MaxWordSeg MAX_WORD_SEG = new MaxWordSeg(DIC);
@Override
public Map<String, String> segMore(String text) {
Map<String, String> map = new HashMap<>();
map.put(SIMPLE_SEG.getClass().getSimpleName(), segText(text, SIMPLE_SEG));
map.put(COMPLEX_SEG.getClass().getSimpleName(), segText(text, COMPLEX_SEG));
map.put(MAX_WORD_SEG.getClass().getSimpleName(), segText(text, MAX_WORD_SEG));
return map;
}
private String segText(String text, Seg seg) {
StringBuilder result = new StringBuilder();
MMSeg mmSeg = new MMSeg(new StringReader(text), seg);
try {
Word word = null;
while((word=mmSeg.next())!=null) {
result.append(word.getString()).append(" ");
}
} catch (IOException ex) {
throw new RuntimeException(ex);
}
return result.toString();
}
8、IKAnalyzer分词器
@Override
public Map<String, String> segMore(String text) {
Map<String, String> map = new HashMap<>();
map.put("智能切分", segText(text, true));
map.put("细粒度切分", segText(text, false));
return map;
}
private String segText(String text, boolean useSmart) {
StringBuilder result = new StringBuilder();
IKSegmenter ik = new IKSegmenter(new StringReader(text), useSmart);
try {
Lexeme word = null;
while((word=ik.next())!=null) {
result.append(word.getLexemeText()).append(" ");
}
} catch (IOException ex) {
throw new RuntimeException(ex);
}
return result.toString();
}
9、Paoding分词器
private static final PaodingAnalyzer ANALYZER = new PaodingAnalyzer();
@Override
public Map<String, String> segMore(String text) {
Map<String, String> map = new HashMap<>();
map.put("MOST_WORDS_MODE", seg(text, PaodingAnalyzer.MOST_WORDS_MODE));
map.put("MAX_WORD_LENGTH_MODE", seg(text, PaodingAnalyzer.MAX_WORD_LENGTH_MODE));
return map;
}
private static String seg(String text, int mode){
ANALYZER.setMode(mode);
StringBuilder result = new StringBuilder();
try {
Token reusableToken = new Token();
TokenStream stream = ANALYZER.tokenStream("", new StringReader(text));
Token token = null;
while((token = stream.next(reusableToken)) != null){
result.append(token.term()).append(" ");
}
} catch (Exception ex) {
throw new RuntimeException(ex);
}
return result.toString();
}
现在我们已经实现了本文的第一个目的:学会使用9大Java开源中文分词器。
最后我们来实现本文的第二个目的:对比分析9大Java开源中文分词器的分词效果,程序如下:
public static Map<String, Set<String>> contrast(String text){
Map<String, Set<String>> map = new LinkedHashMap<>();
map.put("word分词器", new WordEvaluation().seg(text));
map.put("Stanford分词器", new StanfordEvaluation().seg(text));
map.put("Ansj分词器", new AnsjEvaluation().seg(text));
map.put("FudanNLP分词器", new FudanNLPEvaluation().seg(text));
map.put("Jieba分词器", new JiebaEvaluation().seg(text));
map.put("Jcseg分词器", new JcsegEvaluation().seg(text));
map.put("MMSeg4j分词器", new MMSeg4jEvaluation().seg(text));
map.put("IKAnalyzer分词器", new IKAnalyzerEvaluation().seg(text));
map.put("Paoding分词器", new PaodingEvaluation().seg(text));
return map;
}
public static Map<String, Map<String, String>> contrastMore(String text){
Map<String, Map<String, String>> map = new LinkedHashMap<>();
map.put("word分词器", new WordEvaluation().segMore(text));
map.put("Stanford分词器", new StanfordEvaluation().segMore(text));
map.put("Ansj分词器", new AnsjEvaluation().segMore(text));
map.put("FudanNLP分词器", new FudanNLPEvaluation().segMore(text));
map.put("Jieba分词器", new JiebaEvaluation().segMore(text));
map.put("Jcseg分词器", new JcsegEvaluation().segMore(text));
map.put("MMSeg4j分词器", new MMSeg4jEvaluation().segMore(text));
map.put("IKAnalyzer分词器", new IKAnalyzerEvaluation().segMore(text));
map.put("Paoding分词器", new PaodingEvaluation().segMore(text));
return map;
}
public static void show(Map<String, Set<String>> map){
map.keySet().forEach(k -> {
System.out.println(k + " 的分词结果:");
AtomicInteger i = new AtomicInteger();
map.get(k).forEach(v -> {
System.out.println("\t" + i.incrementAndGet() + " 、" + v);
});
});
}
public static void showMore(Map<String, Map<String, String>> map){
map.keySet().forEach(k->{
System.out.println(k + " 的分词结果:");
AtomicInteger i = new AtomicInteger();
map.get(k).keySet().forEach(a -> {
System.out.println("\t" + i.incrementAndGet()+ " 、【" + a + "】\t" + map.get(k).get(a));
});
});
}
public static void main(String[] args) {
show(contrast("杨尚川是APDPlat应用级产品开发平台的作者"));
showMore(contrastMore("杨尚川是APDPlat应用级产品开发平台的作者"));
}
运行结果如下:
word分词器 的分词结果: 1 、杨尚川 是 APDPlat 应用 级 产品 开发 平台 的 作者 2 、杨尚川 是 apdplat 应用级 产品 开发平台 的 作者 3 、杨尚川 是 apdplat 应用 级 产品 开发 平台 的 作者 4 、杨尚川 是 apdplat 应用级 产品 开发 平台 的 作者 Stanford分词器 的分词结果: 1 、杨 尚 川 是 APDPlat 应用 级 产品 开发 平台 的 作者 2 、杨 尚川 是 APDPlat 应用 级 产品 开发 平台 的 作者 Ansj分词器 的分词结果: 1 、杨 尚 川 是 apdplat 应用 级 产品 开发 平台 的 作者 2 、杨 杨尚川 尚 川 是 apdplat 应用 级 产品 开发 平台 的 作者 3 、杨尚川 是 apdplat 应用 级 产品 开发 平台 的 作者 4 、杨尚川 是 apdplat 应用级 产品 开发 平台 的 作者 FudanNLP分词器 的分词结果: 1 、杨尚川 是 APDPlat应 用级 产品 开发 平台 的 作者 Jieba分词器 的分词结果: 1 、杨尚川 是 apdplat 应用 级 产品 开发 产品开发 平台 的 作者 2 、杨尚川 是 apdplat 应用 级 产品开发 平台 的 作者 Jcseg分词器 的分词结果: 1 、杨 尚 川 是 apdplat 应用 级 产品 开发 平台 的 作者 2 、杨 尚川 是 apdplat 应用 级 产品 开发 平台 的 作者 MMSeg4j分词器 的分词结果: 1 、杨 尚 川 是 apdplat 应用 级 产品 开发 平台 的 作者 IKAnalyzer分词器 的分词结果: 1 、杨 尚 川 是 apdplat 应用 级 产品 开发 平台 的 作者 Paoding分词器 的分词结果: 1 、杨尚 尚川 apdplat 应用 级 产品 开发 平台 作者
word分词器 的分词结果: 1 、【全切分算法】 杨尚川 是 APDPlat 应用 级 产品 开发 平台 的 作者 2 、【双向最大最小匹配算法】 杨尚川 是 apdplat 应用 级 产品 开发 平台 的 作者 3 、【正向最大匹配算法】 杨尚川 是 apdplat 应用级 产品 开发平台 的 作者 4 、【双向最大匹配算法】 杨尚川 是 apdplat 应用级 产品 开发平台 的 作者 5 、【逆向最大匹配算法】 杨尚川 是 apdplat 应用级 产品 开发平台 的 作者 6 、【正向最小匹配算法】 杨尚川 是 apdplat 应用 级 产品 开发 平台 的 作者 7 、【双向最小匹配算法】 杨尚川 是 apdplat 应用 级 产品 开发 平台 的 作者 8 、【逆向最小匹配算法】 杨尚川 是 apdplat 应用级 产品 开发 平台 的 作者 Stanford分词器 的分词结果: 1 、【Stanford Chinese Treebank segmentation】 杨 尚 川 是 APDPlat 应用 级 产品 开发 平台 的 作者 2 、【Stanford Beijing University segmentation】 杨 尚川 是 APDPlat 应用 级 产品 开发 平台 的 作者 Ansj分词器 的分词结果: 1 、【BaseAnalysis】 杨 尚 川 是 apdplat 应用 级 产品 开发 平台 的 作者 2 、【IndexAnalysis】 杨 杨尚川 尚 川 是 apdplat 应用 级 产品 开发 平台 的 作者 3 、【ToAnalysis】 杨尚川 是 apdplat 应用 级 产品 开发 平台 的 作者 4 、【NlpAnalysis】 杨尚川 是 apdplat 应用级 产品 开发 平台 的 作者 FudanNLP分词器 的分词结果: 1 、【FudanNLP】 杨尚川 是 APDPlat应 用级 产品 开发 平台 的 作者 Jieba分词器 的分词结果: 1 、【SEARCH】 杨尚川 是 apdplat 应用 级 产品开发 平台 的 作者 2 、【INDEX】 杨尚川 是 apdplat 应用 级 产品 开发 产品开发 平台 的 作者 Jcseg分词器 的分词结果: 1 、【简易模式】 杨 尚 川 是 apdplat 应用 级 产品 开发 平台 的 作者 2 、【复杂模式】 杨 尚川 是 apdplat 应用 级 产品 开发 平台 的 作者 MMSeg4j分词器 的分词结果: 1 、【SimpleSeg】 杨 尚 川 是 apdplat 应用 级 产品 开发 平台 的 作者 2 、【ComplexSeg】 杨 尚 川 是 apdplat 应用 级 产品 开发 平台 的 作者 3 、【MaxWordSeg】 杨 尚 川 是 apdplat 应用 级 产品 开发 平台 的 作者 IKAnalyzer分词器 的分词结果: 1 、【智能切分】 杨 尚 川 是 apdplat 应用 级 产品 开发 平台 的 作者 2 、【细粒度切分】 杨 尚 川 是 apdplat 应用 级 产品 开发 平台 的 作者 Paoding分词器 的分词结果: 1 、【MAX_WORD_LENGTH_MODE】 杨尚 尚川 apdplat 应用 级 产品 开发 平台 作者 2 、【MOST_WORDS_MODE】 杨尚 尚川 apdplat 应用 级 产品 开发 平台 作者
标签:
原文地址:http://my.oschina.net/apdplat/blog/412921