标签:
/*
* 这段程序对于基于欧式距离定义相似度的评估
* */
package byuser;
import java.io.File;
import org.apache.mahout.cf.taste.common.TasteException;
import org.apache.mahout.cf.taste.eval.RecommenderBuilder;
import org.apache.mahout.cf.taste.eval.RecommenderEvaluator;
import org.apache.mahout.cf.taste.impl.eval.AverageAbsoluteDifferenceRecommenderEvaluator;
import org.apache.mahout.cf.taste.impl.neighborhood.NearestNUserNeighborhood;
import org.apache.mahout.cf.taste.impl.recommender.GenericUserBasedRecommender;
import org.apache.mahout.cf.taste.impl.similarity.EuclideanDistanceSimilarity;
import org.apache.mahout.cf.taste.impl.similarity.PearsonCorrelationSimilarity;
import org.apache.mahout.cf.taste.model.DataModel;
import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;
import org.apache.mahout.cf.taste.recommender.Recommender;
import org.apache.mahout.cf.taste.similarity.UserSimilarity;
import org.apache.mahout.cf.taste.similarity.precompute.example.GroupLensDataModel;
public class GenericRecByGroupLens_Evalu {
public GenericRecByGroupLens_Evalu() throws Exception{
DataModel model = new GroupLensDataModel(new File("E:\\mahout项目\\examples\\ratings.dat"));
RecommenderEvaluator evaluator = new AverageAbsoluteDifferenceRecommenderEvaluator();
RecommenderBuilder recommenderBuilder = new RecommenderBuilder() {
@Override
public Recommender buildRecommender(DataModel model) throws TasteException {
//PearsonCoreCOnrrelationSimilarity是皮尔逊相关系数的算法使用
UserSimilarity similarity = new PearsonCorrelationSimilarity(model);
//这里使用的是基于欧式距离定义相似度的算法
UserSimilarity similarity1 = new EuclideanDistanceSimilarity(model);
UserNeighborhood neighborhood = new NearestNUserNeighborhood(100, similarity1, model);
return new GenericUserBasedRecommender(model, neighborhood, similarity1);
}
};
double score = evaluator.evaluate(recommenderBuilder, null, model, 0.95, 0.05);
System.out.println("基于欧式距离定义相似度的推荐引擎的评测得分是: " + score);
}
public static void main(String[] args) throws Exception {
// TODO Auto-generated method stub
GenericRecByGroupLens_Evalu eva = new GenericRecByGroupLens_Evalu();
}
}
如图:
这里是基于皮尔逊算法的评估:
这个是基于欧式距离定义相似度的评估:
可以看出,欧式的算法更加的优于皮尔逊的推荐算法
标签:
原文地址:http://blog.csdn.net/u012965373/article/details/45665197