1. 归并排序算法:
非递归实现:
void mergeSort(vector<int> & nums, vector<int> &tmpNums, int left, int right, int end)//right为右边一段数据的开始,同时也可以用来判断左边一段数据的结束,并且左边的数组长度总是大于或等于右边数组长度
{
int idx_left=left;
int idx_right=right;
int idx_total=left;
while(idx_left<right && idx_right<=end)
{
if(nums[idx_left]<=nums[idx_right])
tmpNums[idx_total++]=nums[idx_left++];
else
tmpNums[idx_total++]=nums[idx_right++];
}
while(idx_left<right)
tmpNums[idx_total++]=nums[idx_left++];
while(idx_right<=end)
tmpNums[idx_total++]=nums[idx_right++];
idx_left=left;
while(idx_left<=end)
{
nums[idx_left]=tmpNums[idx_left];
idx_left++;
}
}
void merge(vector<int> & nums, vector<int> & tmpNums)
{
int step=1;
int i;
int n=nums.size();
while(step<n)
{
for(i=0; i<=n-2*step; i+=2*step)//注意,这里i<=n-2*step是因为要保证最后的一对step数组能够正确排序
{
mergeSort(nums, tmpNums, i, i+step, i+2*step-1);
}
if(i<n-step)
mergeSort(nums, tmpNums, i, i+step, n-1);//对于最后不能正好是一对step长度的情况,要单独处理,且保证最后一个参数为n-1
step*=2;
}
}递归实现方式:
void mergeSort(vector<int> & nums, vector<int> &tmpNums, int left, int right, int end)
{
int idx_left=left;
int idx_right=right;
int idx_total=left;
while(idx_left<right && idx_right<=end)
{
if(nums[idx_left]<=nums[idx_right])
tmpNums[idx_total++]=nums[idx_left++];
else
tmpNums[idx_total++]=nums[idx_right++];
}
while(idx_left<right)
tmpNums[idx_total++]=nums[idx_left++];
while(idx_right<=end)
tmpNums[idx_total++]=nums[idx_right++];
idx_left=left;
while(idx_left<=end)
{
nums[idx_left]=tmpNums[idx_left];
idx_left++;
}
}
void merge(vector<int> & nums, vector<int> & tmpNums, int left, int right)
{
if(left<right)
{
int mid=(left+right)/2;
merge(nums, tmpNums, left, mid);
merge(nums, tmpNums, mid+1, right);
mergeSort(nums, tmpNums, left, mid+1, right);
}
}原文地址:http://blog.csdn.net/jisuanji_wjfioj/article/details/46490373