在前两篇文章中,首先介绍了HEVC标准和编码流程,然后介绍了在HEVC中采用的全新的R-λ模型,本文将基于前面的内容和相应代码对码率控制算法进行详细的分析。
下面基于JCTVC-K0103提案详细介绍一下HEVC中基于R-λ模型的码率控制方法。同时基于HM-10对码率控制部分的代码做一个简要分析,相比于JM,HM中更多的使用了面向对象技术,结构更加清楚明了,码率控制相关代码的基本调用层次如下,纵向上即层层调用的关系,横向上是对几个比较重要的函数的内部调用情况列了出来。
跟以前的方法类似,码率控制方法还是分为两大步骤:比特分配以及调整编码参数来达到目标码率,在第二步中才会用到R-λ模型。
下面先看比特分配。分为三个级别,GOP层、图片层和基本编码单元层。
首先计算每幅图片的目标比特数,f为帧率,Rtar为目标码率
设已编码图片的数量为Ncoded,这些图片用掉的比特数为Rcoded,当前GOP中的图片数量为NGOP ,SW是平滑比特分配的滑动窗口的大小,用于使得比特消耗变化和编码图片的质量更加平缓,在这里设为40,则GOP级别的比特分配为
我们希望能在SW帧之后达到目标码率,如果SW帧图片可以正好做到每一帧消耗TAvgPic 比特,则上式可以改写为
式子的第一部分代表目标码率,第二部分则代表buffer的状态
对应代码如下
main
TAppEncTop::encode
TEncTop::encode
TEncRateCtrl::initRCGOP
TEncRCGOP::create
TEncRCGOP:: xEstGOPTargetBits
事先定义有 const Int g_RCSmoothWindowSize = 40;
Int TEncRCGOP::xEstGOPTargetBits( TEncRCSeq* encRCSeq, Int GOPSize )
{
Int realInfluencePicture = min( g_RCSmoothWindowSize, encRCSeq->getFramesLeft() );
Int averageTargetBitsPerPic = (Int)( encRCSeq->getTargetBits() / encRCSeq->getTotalFrames() );
Int currentTargetBitsPerPic = (Int)( ( encRCSeq->getBitsLeft() - averageTargetBitsPerPic * (encRCSeq->getFramesLeft() - realInfluencePicture) ) / realInfluencePicture );
Int targetBits = currentTargetBitsPerPic * GOPSize;
if ( targetBits < 200 )
{
targetBits = 200; // at least allocate 200 bits for one GOP
}
return targetBits;
}
main
TAppEncTop::encode
TEncTop::encode(先initRCGOP再compressGOP)
TEncGOP::compressGOP
TEncRateCtrl::initRCPic
TEncRCPic::create
TEncRCPic::xEstPicTargetBits
Int TEncRCPic::xEstPicTargetBits( TEncRCSeq* encRCSeq, TEncRCGOP* encRCGOP )
{
Int targetBits = 0;
Int GOPbitsLeft = encRCGOP->getBitsLeft();
Int i;
Int currPicPosition = encRCGOP->getNumPic()-encRCGOP->getPicLeft();
Int currPicRatio = encRCSeq->getBitRatio( currPicPosition );
Int totalPicRatio = 0;
for ( i=currPicPosition; i<encRCGOP->getNumPic(); i++ )
{
totalPicRatio += encRCSeq->getBitRatio( i );
}
targetBits = Int( GOPbitsLeft * currPicRatio / totalPicRatio );
if ( targetBits < 100 )
{
targetBits = 100; // at least allocate 100 bits for one picture
}
if ( m_encRCSeq->getFramesLeft() > 16 )
{
targetBits = Int( g_RCWeightPicRargetBitInBuffer * targetBits + g_RCWeightPicTargetBitInGOP * m_encRCGOP->getTargetBitInGOP( currPicPosition ) );
}
return targetBits;
}
同时有
if ( targetBits < estHeaderBits + 100 )
{
targetBits = estHeaderBits + 100; // at least allocate 100 bits for picture data
}
在实际的应用中,所有图片均使用相同的ω是一种选择(即Equal allocation),这样设置会导致每幅图片消耗的比特差别不大。图片之间分级分配比特是另一种不错的选择(Hierarchical allocation),因为图片之间分级的分配比特可以对编码性能带来不小的提升。K0103的码率控制算法支持均匀分配比特和分级分配比特。
Main
TAppEncTop::encode
TAppEncTop::xCreateLib
TEncTop::create
TEncRateCtrl::init
Int* bitsRatio;
bitsRatio = new Int[ GOPSize ];
for ( Int i=0; i<GOPSize; i++ )
{
bitsRatio[i] = 10;
if ( !GOPList[i].m_refPic )
{
bitsRatio[i] = 2;
}
}
if ( keepHierBits )
{
Double bpp = (Double)( targetBitrate / (Double)( frameRate*picWidth*picHeight ) );
if ( GOPSize == 4 && isLowdelay )
{
if ( bpp > 0.2 )
{
bitsRatio[0] = 2;
bitsRatio[1] = 3;
bitsRatio[2] = 2;
bitsRatio[3] = 6;
}
else if( bpp > 0.1 )
{
bitsRatio[0] = 2;
bitsRatio[1] = 3;
bitsRatio[2] = 2;
bitsRatio[3] = 10;
}
else if ( bpp > 0.05 )
{
bitsRatio[0] = 2;
bitsRatio[1] = 3;
bitsRatio[2] = 2;
bitsRatio[3] = 12;
}
else
{
bitsRatio[0] = 2;
bitsRatio[1] = 3;
bitsRatio[2] = 2;
bitsRatio[3] = 14;
}
}
else if ( GOPSize == 8 && !isLowdelay )
{
if ( bpp > 0.2 )
{
bitsRatio[0] = 15;
bitsRatio[1] = 5;
bitsRatio[2] = 4;
bitsRatio[3] = 1;
bitsRatio[4] = 1;
bitsRatio[5] = 4;
bitsRatio[6] = 1;
bitsRatio[7] = 1;
}
else if ( bpp > 0.1 )
{
bitsRatio[0] = 20;
bitsRatio[1] = 6;
bitsRatio[2] = 4;
bitsRatio[3] = 1;
bitsRatio[4] = 1;
bitsRatio[5] = 4;
bitsRatio[6] = 1;
bitsRatio[7] = 1;
}
else if ( bpp > 0.05 )
{
bitsRatio[0] = 25;
bitsRatio[1] = 7;
bitsRatio[2] = 4;
bitsRatio[3] = 1;
bitsRatio[4] = 1;
bitsRatio[5] = 4;
bitsRatio[6] = 1;
bitsRatio[7] = 1;
}
else
{
bitsRatio[0] = 30;
bitsRatio[1] = 8;
bitsRatio[2] = 4;
bitsRatio[3] = 1;
bitsRatio[4] = 1;
bitsRatio[5] = 4;
bitsRatio[6] = 1;
bitsRatio[7] = 1;
}
}
else
{
printf( "\n hierarchical bit allocation is not support for the specified coding structure currently." );
}
}
需要注意的是,该修正值只在更新Rcoded 时使用(整个序列消耗的比特数),而不会用于更新CodedGOP (当前GOP消耗的比特数),这是因为帧内编码帧消耗的比特数往往很高,甚至高于给GOP分配的比特数,用未经修正的TCurrPic值更新CodedGOP
main
TAppEncTop::encode
TEncTop::encode(先initRCGOP再compressGOP)
TEncGOP::compressGOP
TEncRCSeq::getRefineBitsForIntra
Int TEncRCSeq::getRefineBitsForIntra( Int orgBits )
{
Double bpp = ( (Double)orgBits ) / m_picHeight / m_picHeight;
if ( bpp > 0.2 )
{
return orgBits * 5;
}
if ( bpp > 0.1 )
{
return orgBits * 7;
}
return orgBits * 10;
}
Bitheader 是所有头信息比特数的估计值,由同一层之前的已编码图片的实际头信息比特数估计得来。
main
TAppEncTop::encode
TEncTop::encode(先initRCGOP再compressGOP)
TEncGOP::compressGOP
TEncRateCtrl::initRCPic
TEncRCPic::create(先xEstPicTargetBits再xEstPicHeaderBits)
TEncRCPic:: xEstPicHeaderBits
Int TEncRCPic::xEstPicHeaderBits( list<TEncRCPic*>& listPreviousPictures, Int frameLevel )
{
Int numPreviousPics = 0;
Int totalPreviousBits = 0;
list<TEncRCPic*>::iterator it;
for ( it = listPreviousPictures.begin(); it != listPreviousPictures.end(); it++ )
{
if ( (*it)->getFrameLevel() == frameLevel )
{
totalPreviousBits += (*it)->getPicActualHeaderBits();
numPreviousPics++;
}
}
Int estHeaderBits = 0;
if ( numPreviousPics > 0 )
{
estHeaderBits = totalPreviousBits / numPreviousPics;
}
return estHeaderBits;
}
以上就是比特分配的过程。
main
TAppEncTop::encode
TEncTop::encode(先initRCGOP再compressGOP)
TEncGOP::compressGOP
TEncSlice::compressSlice
TEncRCPic::getLCUTargetBpp
Double TEncRCPic::getLCUTargetBpp()
{
Int LCUIdx = getLCUCoded();
Double bpp = -1.0;
Int avgBits = 0;
Double totalMAD = -1.0;
Double MAD = -1.0;
if ( m_lastPicture == NULL )
{
avgBits = Int( m_bitsLeft / m_LCULeft );
}
else
{
MAD = m_lastPicture->getLCU(LCUIdx).m_MAD;
totalMAD = m_lastPicture->getTotalMAD();
for ( Int i=0; i<LCUIdx; i++ )
{
totalMAD -= m_lastPicture->getLCU(i).m_MAD;
}
if ( totalMAD > 0.1 )
{
avgBits = Int( m_bitsLeft * MAD / totalMAD );
}
else
{
avgBits = Int( m_bitsLeft / m_LCULeft );
}
}
#if L0033_RC_BUGFIX
if ( avgBits < 1 )
{
avgBits = 1;
}
#else
if ( avgBits < 5 )
{
avgBits = 5;
}
#endif
bpp = ( Double )avgBits/( Double )m_LCUs[ LCUIdx ].m_numberOfPixel;
m_LCUs[ LCUIdx ].m_targetBits = avgBits;
return bpp;
}
使用上式依据一幅图片或者一个LCU的目标码率尺推导得到当前图片或者当前LCU编码所需要使用的λ。现在唯一的问题是,在不同编码序列的情况下,模型可能会拥有完全不相同的α和β值。此外,即使对于同一序列,处于不同级别的图片也可能拥有完全不相同的α和β值。例如,当GOP大小为4时,图片共分为三个级别,这三个级别的图片的α和β值可能是不同的。另外,不同的基本编码单元也可能拥有不同的α和β值,在此,我们假设在同一级别图片中对应位置的基本编码单元的α和β值相同。
需要注意的是α和β值的初始值设置并不是很严重的问题,因为在编码过程中,α和β值会根据序列逐渐更新,并最终适应序列特性。
设α和β值的初始值分别为3.2003 和-1.367。
Main
TAppEncTop::encode
TAppEncTop::xCreateLib
TEncTop::create
TEncRateCtrl::init
TEncRCSeq::initPicPara
Void TEncRCSeq::initPicPara( TRCParameter* picPara )
{
assert( m_picPara != NULL );
if ( picPara == NULL )
{
for ( Int i=0; i<m_numberOfLevel; i++ )
{
m_picPara[i].m_alpha = 3.2003;
m_picPara[i].m_beta = -1.367;
}
}
else
{
for ( Int i=0; i<m_numberOfLevel; i++ )
{
m_picPara[i] = picPara[i];
}
}
}
以及
Main
TAppEncTop::encode
TAppEncTop::xCreateLib
TEncTop::create
TEncRateCtrl::init
TEncRCSeq::initLCUPara
Void TEncRCSeq::initLCUPara( TRCParameter** LCUPara )
{
if ( m_LCUPara == NULL )
{
return;
}
if ( LCUPara == NULL )
{
for ( Int i=0; i<m_numberOfLevel; i++ )
{
for ( Int j=0; j<m_numberOfLCU; j++)
{
m_LCUPara[i][j].m_alpha = 3.2003;
m_LCUPara[i][j].m_beta = -1.367;
}
}
}
else
{
for ( Int i=0; i<m_numberOfLevel; i++ )
{
for ( Int j=0; j<m_numberOfLCU; j++)
{
m_LCUPara[i][j] = LCUPara[i][j];
}
}
}
}
Int QP = Int( 4.2005 * log( lambda ) + 13.7122 + 0.5 );
main
TAppEncTop::encode
TEncTop::encode(先initRCGOP再compressGOP)
TEncGOP::compressGOP
TEncRCPic::calAverageLambda
Double TEncRCPic::calAverageLambda()
{
Double totalLambdas = 0.0;
Int numTotalLCUs = 0;
Int i;
for ( i=0; i<m_numberOfLCU; i++ )
{
if ( m_LCUs[i].m_lambda > 0.01 )
{
totalLambdas += log( m_LCUs[i].m_lambda );
numTotalLCUs++;
}
}
Double avgLambda;
if( numTotalLCUs == 0 )
{
avgLambda = -1.0;
}
else
{
avgLambda = pow( 2.7183, totalLambdas / numTotalLCUs );
}
return avgLambda;
}
main
TAppEncTop::encode
TEncTop::encode(先initRCGOP再compressGOP)
TEncGOP::compressGOP
TEncRCPic:: calAverageQP
Double TEncRCPic::calAverageQP()
{
Int totalQPs = 0;
Int numTotalLCUs = 0;
Int i;
for ( i=0; i<m_numberOfLCU; i++ )
{
if ( m_LCUs[i].m_QP > 0 )
{
totalQPs += m_LCUs[i].m_QP;
numTotalLCUs++;
}
}
Double avgQP = 0.0;
if ( numTotalLCUs == 0 )
{
avgQP = g_RCInvalidQPValue;
}
else
{
avgQP = ((Double)totalQPs) / ((Double)numTotalLCUs);
}
return avgQP;
}
更新过程按下式进行
Double estLambda = alpha * pow( bpp, beta );
main
TAppEncTop::encode
TEncTop::encode(先initRCGOP再compressGOP)
TEncGOP::compressGOP
TEncRCPic::updateAfterLCU
Void TEncRCPic::updateAfterLCU( Int LCUIdx, Int bits, Int QP, Double lambda, Bool updateLCUParameter )
{
m_LCUs[LCUIdx].m_actualBits = bits;
m_LCUs[LCUIdx].m_QP = QP;
m_LCUs[LCUIdx].m_lambda = lambda;
m_LCULeft--;
m_bitsLeft -= bits;
m_pixelsLeft -= m_LCUs[LCUIdx].m_numberOfPixel;
if ( !updateLCUParameter )
{
return;
}
if ( !m_encRCSeq->getUseLCUSeparateModel() )
{
return;
}
Double alpha = m_encRCSeq->getLCUPara( m_frameLevel, LCUIdx ).m_alpha;
Double beta = m_encRCSeq->getLCUPara( m_frameLevel, LCUIdx ).m_beta;
Int LCUActualBits = m_LCUs[LCUIdx].m_actualBits;
Int LCUTotalPixels = m_LCUs[LCUIdx].m_numberOfPixel;
Double bpp = ( Double )LCUActualBits/( Double )LCUTotalPixels;
Double calLambda = alpha * pow( bpp, beta );
Double inputLambda = m_LCUs[LCUIdx].m_lambda;
if( inputLambda < 0.01 || calLambda < 0.01 || bpp < 0.0001 )
{
alpha *= ( 1.0 - m_encRCSeq->getAlphaUpdate() / 2.0 );
beta *= ( 1.0 - m_encRCSeq->getBetaUpdate() / 2.0 );
alpha = Clip3( 0.05, 20.0, alpha );
beta = Clip3( -3.0, -0.1, beta );
TRCParameter rcPara;
rcPara.m_alpha = alpha;
rcPara.m_beta = beta;
m_encRCSeq->setLCUPara( m_frameLevel, LCUIdx, rcPara );
return;
}
calLambda = Clip3( inputLambda / 10.0, inputLambda * 10.0, calLambda );
alpha += m_encRCSeq->getAlphaUpdate() * ( log( inputLambda ) - log( calLambda ) ) * alpha;
double lnbpp = log( bpp );
lnbpp = Clip3( -5.0, 1.0, lnbpp );
beta += m_encRCSeq->getBetaUpdate() * ( log( inputLambda ) - log( calLambda ) ) * lnbpp;
alpha = Clip3( 0.05, 20.0, alpha );
beta = Clip3( -3.0, -0.1, beta );
TRCParameter rcPara;
rcPara.m_alpha = alpha;
rcPara.m_beta = beta;
m_encRCSeq->setLCUPara( m_frameLevel, LCUIdx, rcPara );
}
以及
main
TAppEncTop::encode
TEncTop::encode(先initRCGOP再compressGOP)
TEncGOP::compressGOP
TEncRCPic:: updateAfterPicture
Void TEncRCPic::updateAfterPicture( Int actualHeaderBits, Int actualTotalBits, Double averageQP, Double averageLambda, Double effectivePercentage )
{
m_picActualHeaderBits = actualHeaderBits;
m_picActualBits = actualTotalBits;
if ( averageQP > 0.0 )
{
m_picQP = Int( averageQP + 0.5 );
}
else
{
m_picQP = g_RCInvalidQPValue;
}
m_picLambda = averageLambda;
for ( Int i=0; i<m_numberOfLCU; i++ )
{
m_totalMAD += m_LCUs[i].m_MAD;
}
Double alpha = m_encRCSeq->getPicPara( m_frameLevel ).m_alpha;
Double beta = m_encRCSeq->getPicPara( m_frameLevel ).m_beta;
// update parameters
Double picActualBits = ( Double )m_picActualBits;
Double picActualBpp = picActualBits/(Double)m_numberOfPixel;
Double calLambda = alpha * pow( picActualBpp, beta );
Double inputLambda = m_picLambda;
if ( inputLambda < 0.01 || calLambda < 0.01 || picActualBpp < 0.0001 || effectivePercentage < 0.05 )
{
alpha *= ( 1.0 - m_encRCSeq->getAlphaUpdate() / 2.0 );
beta *= ( 1.0 - m_encRCSeq->getBetaUpdate() / 2.0 );
alpha = Clip3( 0.05, 20.0, alpha );
beta = Clip3( -3.0, -0.1, beta );
TRCParameter rcPara;
rcPara.m_alpha = alpha;
rcPara.m_beta = beta;
m_encRCSeq->setPicPara( m_frameLevel, rcPara );
return;
}
calLambda = Clip3( inputLambda / 10.0, inputLambda * 10.0, calLambda );
alpha += m_encRCSeq->getAlphaUpdate() * ( log( inputLambda ) - log( calLambda ) ) * alpha;
double lnbpp = log( picActualBpp );
lnbpp = Clip3( -5.0, 1.0, lnbpp );
beta += m_encRCSeq->getBetaUpdate() * ( log( inputLambda ) - log( calLambda ) ) * lnbpp;
alpha = Clip3( 0.05, 20.0, alpha );
beta = Clip3( -3.0, -0.1, beta );
TRCParameter rcPara;
rcPara.m_alpha = alpha;
rcPara.m_beta = beta;
m_encRCSeq->setPicPara( m_frameLevel, rcPara );
}
Main
TAppEncTop::encode
TAppEncTop::xCreateLib
TEncTop::create
TEncRateCtrl::init
TEncRCSeq::create
m_numberOfPixel = m_picWidth * m_picHeight;
m_targetBits = (Int64)m_totalFrames * (Int64)m_targetRate / (Int64)m_frameRate;
m_seqTargetBpp = (Double)m_targetRate / (Double)m_frameRate / (Double)m_numberOfPixel;
if ( m_seqTargetBpp < 0.03 )
{
m_alphaUpdate = 0.01;
m_betaUpdate = 0.005;
}
else if ( m_seqTargetBpp < 0.08 )
{
m_alphaUpdate = 0.05;
m_betaUpdate = 0.025;
}
else
{
m_alphaUpdate = 0.1;
m_betaUpdate = 0.05;
}
当然,α和β也是有范围限定的。α 的值限定在 [0.05, 20] 而 β 的值限定在 [?3.0, ?0.1].
alpha = Clip3( 0.05, 20.0, alpha ); beta = Clip3( -3.0, -0.1, beta );
main
TAppEncTop::encode
TEncTop::encode(先initRCGOP再compressGOP)
TEncGOP::compressGOP
Double TEncRCPic::estimatePicLambda( list<TEncRCPic*>& listPreviousPictures )
{
Double alpha = m_encRCSeq->getPicPara( m_frameLevel ).m_alpha;
Double beta = m_encRCSeq->getPicPara( m_frameLevel ).m_beta;
Double bpp = (Double)m_targetBits/(Double)m_numberOfPixel;
Double estLambda = alpha * pow( bpp, beta );
Double lastLevelLambda = -1.0;
Double lastPicLambda = -1.0;
Double lastValidLambda = -1.0;
list<TEncRCPic*>::iterator it;
for ( it = listPreviousPictures.begin(); it != listPreviousPictures.end(); it++ )
{
if ( (*it)->getFrameLevel() == m_frameLevel )
{
lastLevelLambda = (*it)->getPicActualLambda();
}
lastPicLambda = (*it)->getPicActualLambda();
if ( lastPicLambda > 0.0 )
{
lastValidLambda = lastPicLambda;
}
}
if ( lastLevelLambda > 0.0 )
{
lastLevelLambda = Clip3( 0.1, 10000.0, lastLevelLambda );
estLambda = Clip3( lastLevelLambda * pow( 2.0, -3.0/3.0 ), lastLevelLambda * pow( 2.0, 3.0/3.0 ), estLambda );
}
if ( lastPicLambda > 0.0 )
{
lastPicLambda = Clip3( 0.1, 2000.0, lastPicLambda );
estLambda = Clip3( lastPicLambda * pow( 2.0, -10.0/3.0 ), lastPicLambda * pow( 2.0, 10.0/3.0 ), estLambda );
}
else if ( lastValidLambda > 0.0 )
{
lastValidLambda = Clip3( 0.1, 2000.0, lastValidLambda );
estLambda = Clip3( lastValidLambda * pow(2.0, -10.0/3.0), lastValidLambda * pow(2.0, 10.0/3.0), estLambda );
}
else
{
estLambda = Clip3( 0.1, 10000.0, estLambda );
}
if ( estLambda < 0.1 )
{
estLambda = 0.1;
}
m_estPicLambda = estLambda;
return estLambda;
}
Int TEncRCPic::estimatePicQP( Double lambda, list<TEncRCPic*>& listPreviousPictures )
{
Int QP = Int( 4.2005 * log( lambda ) + 13.7122 + 0.5 );
Int lastLevelQP = g_RCInvalidQPValue;
Int lastPicQP = g_RCInvalidQPValue;
Int lastValidQP = g_RCInvalidQPValue;
list<TEncRCPic*>::iterator it;
for ( it = listPreviousPictures.begin(); it != listPreviousPictures.end(); it++ )
{
if ( (*it)->getFrameLevel() == m_frameLevel )
{
lastLevelQP = (*it)->getPicActualQP();
}
lastPicQP = (*it)->getPicActualQP();
if ( lastPicQP > g_RCInvalidQPValue )
{
lastValidQP = lastPicQP;
}
}
if ( lastLevelQP > g_RCInvalidQPValue )
{
QP = Clip3( lastLevelQP - 3, lastLevelQP + 3, QP );
}
if( lastPicQP > g_RCInvalidQPValue )
{
QP = Clip3( lastPicQP - 10, lastPicQP + 10, QP );
}
else if( lastValidQP > g_RCInvalidQPValue )
{
QP = Clip3( lastValidQP - 10, lastValidQP + 10, QP );
}
return QP;
}
在LCU层有
Double TEncRCPic::getLCUEstLambda( Double bpp )
{
Int LCUIdx = getLCUCoded();
Double alpha;
Double beta;
if ( m_encRCSeq->getUseLCUSeparateModel() )
{
alpha = m_encRCSeq->getLCUPara( m_frameLevel, LCUIdx ).m_alpha;
beta = m_encRCSeq->getLCUPara( m_frameLevel, LCUIdx ).m_beta;
}
else
{
alpha = m_encRCSeq->getPicPara( m_frameLevel ).m_alpha;
beta = m_encRCSeq->getPicPara( m_frameLevel ).m_beta;
}
Double estLambda = alpha * pow( bpp, beta );
//for Lambda clip, picture level clip
Double clipPicLambda = m_estPicLambda;
//for Lambda clip, LCU level clip
Double clipNeighbourLambda = -1.0;
for ( int i=LCUIdx - 1; i>=0; i-- )
{
if ( m_LCUs[i].m_lambda > 0 )
{
clipNeighbourLambda = m_LCUs[i].m_lambda;
break;
}
}
if ( clipNeighbourLambda > 0.0 )
{
estLambda = Clip3( clipNeighbourLambda * pow( 2.0, -1.0/3.0 ), clipNeighbourLambda * pow( 2.0, 1.0/3.0 ), estLambda );
}
if ( clipPicLambda > 0.0 )
{
estLambda = Clip3( clipPicLambda * pow( 2.0, -2.0/3.0 ), clipPicLambda * pow( 2.0, 2.0/3.0 ), estLambda );
}
else
{
estLambda = Clip3( 10.0, 1000.0, estLambda );
}
if ( estLambda < 0.1 )
{
estLambda = 0.1;
}
return estLambda;
}
Int TEncRCPic::getLCUEstQP( Double lambda, Int clipPicQP )
{
Int LCUIdx = getLCUCoded();
Int estQP = Int( 4.2005 * log( lambda ) + 13.7122 + 0.5 );
//for Lambda clip, LCU level clip
Int clipNeighbourQP = g_RCInvalidQPValue;
#if L0033_RC_BUGFIX
for ( int i=LCUIdx - 1; i>=0; i-- )
#else
for ( int i=LCUIdx; i>=0; i-- )
#endif
{
if ( (getLCU(i)).m_QP > g_RCInvalidQPValue )
{
clipNeighbourQP = getLCU(i).m_QP;
break;
}
}
if ( clipNeighbourQP > g_RCInvalidQPValue )
{
estQP = Clip3( clipNeighbourQP - 1, clipNeighbourQP + 1, estQP );
}
estQP = Clip3( clipPicQP - 2, clipPicQP + 2, estQP );
return estQP;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
HEVC码率控制算法研究与HM相应代码分析(三)——算法及代码分析
原文地址:http://blog.csdn.net/nonmarking/article/details/47357657