一篇基于最大最小分类算法的好文章.简单明了.有所改进...
分类:
其他好文 时间:
2014-07-20 22:12:43
阅读次数:
265
转载请注明出处:电子科技大学EClab——落叶花开http://www.cnblogs.com/nlp-yekai/p/3848528.htmlSVD,即奇异值分解,在自然语言处理中,用来做潜在语义分析即LSI,或者LSA。最早见文章An introduction to latent semanti...
分类:
编程语言 时间:
2014-07-19 16:10:01
阅读次数:
418
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明。本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。1. GM...
分类:
其他好文 时间:
2014-07-18 19:25:06
阅读次数:
204
基于相似性聚类 很多时候,我们想了解一群人中的一个成员与其他成员之间有多么相似。例如,假设我们是一家品牌营销公司,刚刚完成了一份挂怒有潜力新品牌的研究调查问卷。在这份调查问卷中,我们向一群人展示了新品牌的几个特征,并且要求他们对这个新品牌的每个特征按五分制打分。同时也收集了目标人群的社会经济特征.....
分类:
其他好文 时间:
2014-07-18 08:04:51
阅读次数:
316
(一)深入浅出理解索引结构 实际上,您可以把索引理解为一种特殊的目录。微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引、簇集索引)和非聚集索引(nonclustered index,也称非聚类索引、非簇集索引)。下面,我们举例来说明一下聚集索引和非聚集...
分类:
数据库 时间:
2014-07-16 18:34:29
阅读次数:
307
在聚类中我们经经常使用到EM算法(i.e. Estimation - Maximization)进行參数预计, 在该算法中我们通过函数的凹/凸性,在estimation和maximization两步中迭代地进行參数预计,并保证能够算法收敛,达到局部最优解。PS:为了不在11.11这个吉祥的日子发bl...
分类:
其他好文 时间:
2014-07-16 18:09:11
阅读次数:
218
在 聚类算法K-Means, K-Medoids, GMM, Spectral clustering,Ncut一文中我们给出了GMM算法的基本模型与似然函数,在EM算法原理中对EM算法的实现与收敛性证明进行了具体说明。本文主要针对怎样用EM算法在混合高斯模型下进行聚类进行代码上的分析说明。1. GM...
分类:
其他好文 时间:
2014-07-15 09:13:23
阅读次数:
355
聚类:就是将一个对象的集合分成几个簇,每个簇之间的对象不相似,但是簇内对象相似。可以认为是“物以类聚”。从这个简单的描述中,可以看出聚类的关键是如何度量对象间的相似性。较为常见的用于度量对象的相似度的方法有距离、密度等。k-Means:k-Means算法的核心思想是把n个数据对象划分为k个类(这k各...
分类:
其他好文 时间:
2014-07-14 21:27:26
阅读次数:
309
在聚类中我们经经常使用到EM算法(i.e. Estimation - Maximization)进行參数预计, 在该算法中我们通过函数的凹/凸性,在estimation和maximization两步中迭代地进行參数预计,并保证能够算法收敛,达到局部最优解。PS:为了不在11.11这个吉祥的日子发bl...
分类:
其他好文 时间:
2014-07-14 15:28:42
阅读次数:
164
众所周知,Java的Math.random()产生的是服从均匀分布的随机数,但是其他分布的应用也相当广泛,例如泊松分布和高斯分布(正态分布),而这些分布Java没有很好的提供(高斯分布可以利用Random类),我们需要自己编写。
首先是泊松分布,这是一个离散型的随机变量分布,比较好弄,此外例如考察一些到达事件的概率时,通常服从泊松分布,因此该分布相当实用。在开始编写之前,先感谢...
分类:
编程语言 时间:
2014-07-14 11:13:13
阅读次数:
262