机器学习按数据的使用方式来说可以分为有监督学习、无监督学习、半监督学习、强化学习等,机器学习中的算法还有另外一种划分方式:分类、聚类、回归。但我更喜欢分为两种:广义的分类(分类+聚类)和回归,这里是按照预测的结果是离散数据还是连续数据来划分的。今天要介绍的决策树就是分类算法中的一种。 在介绍机器学习 ...
分类:
其他好文 时间:
2017-05-08 01:26:28
阅读次数:
228
先抛出个例子,根据房子的面积来判断房子的价格。 什么是监督学习,大概了解就是有标准答案的训练,比如上面那个房子的问题,之前给的training examples都是一个x对应特定的y,就相当于有标准答案,这就是监督学习。supervised learning(我理解的) 无监督学习就是没有标准答案的 ...
分类:
其他好文 时间:
2017-05-07 23:17:13
阅读次数:
180
Machine Learning(机器学习)是研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 它是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演译。 在过去的十年中,机器学习帮助我 ...
分类:
其他好文 时间:
2017-05-06 20:01:32
阅读次数:
153
目前为止,我们已经讨论了神经网络在有监督学习中的应用。在有监督学习中,训练样本是有类别标签的。现在假设我们只有一个没有带类别标签的训练样本集合 ,其中 。自编码神经网络是一种无监督学习算法,它使用了反向传播算法,并让目标值等于输入值,比如 。下图是一个自编码神经网络的示例。 自编码神经网络尝试学习一 ...
分类:
Web程序 时间:
2017-05-06 19:05:30
阅读次数:
1119
概述 在机器学习领域,主要有三类不同的学习方法: 监督学习(Supervised learning) 非监督学习(Unsupervised learning) 半监督学习(Semi-supervised learning) 定义 监督学习:通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函 ...
分类:
其他好文 时间:
2017-05-04 01:34:05
阅读次数:
155
前面,我们提到了监督学习,在机器学习中,与之对应的是非监督学习。无监督学习的问题是,在未加标签的数据中,试图找到隐藏的结构。因为提供给学习者的实例是未标记的,因此没有错误或报酬信号来评估潜在的解决方案。这区别于监督学习和强化学习无监督学习。 无监督学习是密切相关的统计数据密度估计的问题。然而无监督学 ...
分类:
系统相关 时间:
2017-04-28 22:18:25
阅读次数:
299
在机器学习(Machine learning)领域。主要有三类不同的学习方法: 监督学习(Supervised learning)、 非监督学习(Unsupervised learning)、 半监督学习(Semi-supervised learning), 监督学习:通过已有的一部分输入数据与输出 ...
分类:
其他好文 时间:
2017-04-22 20:43:33
阅读次数:
305
有标签的数据固然好,可是一方面打标签的代价太高,另一方面大部分数据是无标签的。这样就涉及到无监督、半监督、Self-taught学习的问题。本文将介绍两种适用于无标签数据的学习方法,可以找到数据中的隐...
分类:
Web程序 时间:
2017-04-20 10:59:55
阅读次数:
1799
机器学习-第一周 这是机器学习的第一周课程,涉及到的内容较少,主要是认识一下什么是机器学习以及机器学习两个主要的分类:有监督学习和无监督学习。另外,通过一个最基础的线性回归模型来介绍机器学习中的一些相关的概念。 本周内容思维导图 Introduce 什么是机器学习? A computer progr ...
分类:
其他好文 时间:
2017-04-16 12:13:21
阅读次数:
137