假设给定m个训练样本的训练集,用梯度下降法训练一个神经网络,对于单个训练样本(x,y),定义该样本的损失函数:那么整个训练集的损失函数定义如下:第一项是所有样本的方差的均值。第二项是一个归一化项(也叫权重衰减项),该项是为了减少权连接权重的更新速度,防止过拟合。我们的目标是最小化关于W和 b 的函数...
分类:
编程语言 时间:
2014-10-13 02:27:02
阅读次数:
310
本节课主要介绍人工神经网络.通过介绍评定模型,随机梯度下降法,生物启发和感知器系统,讲师用视图和数学解析式详细地讲解了神经网络的运行过程以及原理....
分类:
其他好文 时间:
2014-10-09 19:39:57
阅读次数:
256
在逻辑回归之问题建模分析中我们提到最大化参数θ的最大化似然函数可以用梯度下降法,对参数进行更新直至上面的对数似然函数收敛。下面引入另一种方法:牛顿方法。开始,首先我们考虑如何找到一个函数的零点。也就是我们有一个函数:,我们希望找到一个值θ,使得.我们首先随机取某一点(x,f(x)),那么f(x)在该...
分类:
其他好文 时间:
2014-10-07 12:01:13
阅读次数:
288
Java实现简单版SVM近期的图像分类工作要用到latent svm,为了更加深入了解svm,自己动手实现一个简单版的。 之所以说是简单版,由于没实用到拉格朗日,对偶,核函数等等。而是用最简单的梯度下降法求解。当中的数学原理我參考了http://blog.csdn.net/lifeitengu...
分类:
编程语言 时间:
2014-10-05 14:48:58
阅读次数:
323
由于最近在学习standford大学 Andrew Ng 大牛的机器学习视频,所以想对所学的方法做一个总结,后面所要讲到的算法主要是视频里面学到的机器学习领域常用的算法。在文中我们所要学的的算法主要有Linear Regression(线性回归),gradient descent(梯度下降法),n....
分类:
其他好文 时间:
2014-09-29 12:47:20
阅读次数:
254
由于最近在学习standford大学 Andrew Ng 大牛的机器学习视频,所以想对所学的方法做一个总结,后面所要讲到的算法主要是视频里面学到的机器学习领域常用的算法。在文中我们所要学的的算法主要有Linear Regression(线性回归),gradient descent(梯度下降法),no...
分类:
其他好文 时间:
2014-09-28 22:59:05
阅读次数:
234
笔者采用MindManager思维导图软件对基于四元数的互补滤波法和梯度下降法进行详细的解释,非常形象。...
分类:
其他好文 时间:
2014-09-12 23:33:24
阅读次数:
654
之前我们在求Logistic回归时,用的是梯度上升算法,也就是要使得似然函数最大化,利用梯度上升算法,不断的迭代。这节课引出牛顿方法,它的作用和梯度上升算法的一样的,不同的是牛顿方法所需的迭代次数更少,收敛速度更快。红色曲线是利用牛顿法迭代求解,绿色曲线是利用梯度下降法求解。牛顿法:wiki牛顿法(...
分类:
其他好文 时间:
2014-09-10 15:30:40
阅读次数:
317
本文是Andrew Ng在Coursera的机器学习课程的笔记。整体步骤确定网络模型初始化权重参数对于每个样例,执行以下步骤直到收敛计算模型输出:forward propagation计算代价函数:比较模型输出与真实输出的差距更新权重参数:back propagation确定网络模型神经网络模型由输...
分类:
其他好文 时间:
2014-07-22 23:36:27
阅读次数:
376