逻辑回归算法相信很多人都很熟悉,也算是我比较熟悉的算法之一了,毕业论文当时的项目就是用的这个算法。这个算法可能不想随机森林、SVM、神经网络、GBDT等分类算法那么复杂那么高深的样子,可是绝对不能小看这个算法,因为它有几个优点是那几个算法无法达到的,一是逻辑回归的算法已经比较成熟,预测较为准确;二是 ...
分类:
其他好文 时间:
2016-09-12 19:08:47
阅读次数:
696
(1)用sklearn进行逻辑回归时,建立完模型,由于要预测的数据量很大,无法一次全部预测,只能每次预测一个样本数据, 在每次以列表形式输入数据进行预测时出现: ...
分类:
编程语言 时间:
2016-09-07 19:02:10
阅读次数:
276
文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准。感谢博主Rachel Zhang 的个人笔记,为我做个人学习笔记提供了很好的参考和榜样。 § 3. 逻辑回归 Logistic Regres ...
分类:
其他好文 时间:
2016-09-07 01:41:28
阅读次数:
264
在大数据特别热门的今天,出现了各种培训课程。但我发现这些课程的重点都放在算法的学习上。如何理解逻辑回归或深度学习很重要,但你一旦开始处理数据,你会发现还有其他的东西更为重要。 那么对于数据分析,什么才是正确的呢?关键就是你要保证你做的模型对于未来的数据也能有好的表现。所以我在这里教你三个书本不能教给 ...
分类:
其他好文 时间:
2016-08-17 15:25:13
阅读次数:
157
一:引言 在前面我们谈论到的算法都是在给定x的情况下直接对p(y|x;Θ)进行建模。例如,逻辑回归利用hθ(x) = g(θTx)对p(y|x;Θ)建模。 现在考虑这样一个分类问题,我们想根据一些特征来区别动物是大象(y=1)还是狗(y=0)。给定了这样一个训练集,逻辑回归或感知机算法要做的就是去找 ...
分类:
编程语言 时间:
2016-08-15 01:26:44
阅读次数:
295
机器学习算法与Python实践这个系列主要是参考《机器学习实战》这本书。因为自己想学习Python,然后也想对一些机器学习算法加深下了解,所以就想通过Python来实现几个比较常用的机器学习算法。恰好遇见这本同样定位的书籍,所以就参考这本书的过程来学习了。 这节学习的是逻辑回归(Logistic R ...
分类:
编程语言 时间:
2016-08-14 15:58:21
阅读次数:
237
分类问题和线性回归问题问题很像,只是在分类问题中,我们预测的y值包含在一个小的离散数据集里。首先,认识一下二元分类(binary classification),在二元分类中,y的取值只能是0和1.例如,我们要做一个垃圾邮件分类器,则为邮件的特征,而对于y,当它1则为垃圾邮件,取0表示邮件为正常邮件 ...
分类:
其他好文 时间:
2016-08-13 18:20:55
阅读次数:
267
边界:感知 在逻辑回归中,$p(y=1 \mid x;\theta)$的概率由$h_{\theta}(x)=g(\theta^{T}x)$建立模型。当$h_{\theta}(x)\geq 0.5$则预测x的输出为1。或者说当$\theta_{x} \geq 0$则预测x的输出为1。因此当$\thet ...
分类:
其他好文 时间:
2016-08-05 08:52:43
阅读次数:
171
虚拟变量定义在实际建模过程中,被解释变量不但受定量变量影响,同时还受定性变量影响。例如需要考虑性别、民族、不同历史时期、季节差异、企业所有制性质不同等因素的影响。这些因素也应该包括在模型中。由于定性变量通常表示的是某种特征的有和无,所以量化方法可采用取值为1或0。这种变量称作虚拟变量,用D表示。...
分类:
其他好文 时间:
2016-08-05 01:00:27
阅读次数:
623