题目:
10 9999 1 1 1 1 1 1 1 1 1 1 20 500 1 0 1 0 1 0 1 0 1 0
45 104
题意:给一个函数的递推公式,求出它的第k项。
思路:矩阵快速幂。
代码:
#include <cstdlib>
#include <cctype>
#include <cstring>
#include <cstdio>
#include <cmath>
#include<climits>
#include <algorithm>
#include <vector>
#include <string>
#include <iostream>
#include <sstream>
#include <map>
#include <set>
#include <queue>
#include <stack>
#include <fstream>
#include <numeric>
#include <iomanip>
#include <bitset>
#include <list>
#include <stdexcept>
#include <functional>
#include <utility>
#include <ctime>
using namespace std;
#define PB push_back
#define MP make_pair
#define REP(i,x,n) for(int i=x;i<(n);++i)
#define FOR(i,l,h) for(int i=(l);i<=(h);++i)
#define FORD(i,h,l) for(int i=(h);i>=(l);--i)
#define SZ(X) ((int)(X).size())
#define ALL(X) (X).begin(), (X).end()
#define RI(X) scanf("%d", &(X))
#define RII(X, Y) scanf("%d%d", &(X), &(Y))
#define RIII(X, Y, Z) scanf("%d%d%d", &(X), &(Y), &(Z))
#define DRI(X) int (X); scanf("%d", &X)
#define DRII(X, Y) int X, Y; scanf("%d%d", &X, &Y)
#define DRIII(X, Y, Z) int X, Y, Z; scanf("%d%d%d", &X, &Y, &Z)
#define OI(X) printf("%d",X);
#define RS(X) scanf("%s", (X))
#define MS0(X) memset((X), 0, sizeof((X)))
#define MS1(X) memset((X), -1, sizeof((X)))
#define LEN(X) strlen(X)
#define F first
#define S second
#define Swap(a, b) (a ^= b, b ^= a, a ^= b)
#define Dpoint strcut node{int x,y}
#define cmpd int cmp(const int &a,const int &b){return a>b;}
/*#ifdef HOME
freopen("in.txt","r",stdin);
#endif*/
const int MOD = 1e9+7;
typedef vector<int> VI;
typedef vector<string> VS;
typedef vector<double> VD;
typedef long long LL;
typedef pair<int,int> PII;
//#define HOME
int Scan()
{
int res = 0, ch, flag = 0;
if((ch = getchar()) == '-') //判断正负
flag = 1;
else if(ch >= '0' && ch <= '9') //得到完整的数
res = ch - '0';
while((ch = getchar()) >= '0' && ch <= '9' )
res = res * 10 + ch - '0';
return flag ? -res : res;
}
/*----------------PLEASE-----DO-----NOT-----HACK-----ME--------------------*/
struct Matrix
{
int m[15][15];
void init()
{
MS0(m);
}
};
Matrix mul(Matrix a,Matrix b,int M)
{
Matrix c;
c.init();
for(int i=0;i<10;i++)
for(int j=0;j<10;j++)
for(int k=0;k<10;k++)
{c.m[i][j]+=((long long )a.m[i][k]*b.m[k][j])%M;
c.m[i][j]%=M;}
return c;
}
Matrix mypow(Matrix a,int k,int M)
{
Matrix ans;
ans.init();
for(int i=0;i<10;i++)
ans.m[i][i]=1;
Matrix temp=a;
while(k)
{
if(k&1)
ans=mul(ans,temp,M);
k>>=1;
temp=mul(temp,temp,M);
}
return ans;
}
int a[10];
int main()
{
int k,m;
while(RII(k,m)!=EOF)
{
if(k<10)
{
printf("%d\n",k%m);
continue;
}
for(int i=0;i<10;i++)
RI(a[i]);
Matrix A;
A.init();
for(int i=0;i<10;i++)
A.m[0][i]=a[i];
for(int i=1;i<10;i++)
A.m[i][i-1]=1;
Matrix res=mypow(A,k-9,m);
int ans=0;
for(int i=0;i<10;i++)
ans=(ans+(long long)res.m[0][i]*(9-i))%m;
printf("%d\n",ans);
}
return 0;
}
版权声明:本文为博主原创文章,未经博主允许不得转载。
hdu1757 A Simple Math Problem(矩阵快速幂)
原文地址:http://blog.csdn.net/u013840081/article/details/48070367