码迷,mamicode.com
首页 > 其他好文 > 详细

二叉树、B树、B+树、B*树、LSM树

时间:2015-09-10 19:28:11      阅读:837      评论:0      收藏:0      [点我收藏+]

标签:


HBase 对于数据产品,底层存储架构直接决定了数据库的特性和使用场景。RDBMS(关系型数据库)使用 B树 及 B+树 作为数据存储结构。 HBase 使用 LSM树。 。


二叉树 
        所有节点至多拥有两个子节点。节点左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;B树搜索,从根结点开始,如果查询的关键字与结点的关键字相等,那么就命中
        技术分享

     

B+树

    数据的读取速度因素

由于传统的机械磁盘具有快速顺序读写、慢速随机读写的访问特性,这个特性对磁盘存储结构和算法的选择影响甚大。

为了改善数据访问特性,文件系统或数据库系统通常会对数据排序后存储,加快数据检索速度,这就需要保证数据在不断更新、插入、删除后依然有序,传统关系数据库的做法是使用B+树,如图所示。


技术分享

 

B树在插入的时候,如果是最后一个node,那么速度非常快,因为是顺序写。

技术分享

 

但如果有更新插入删除等综合写入,最后因为需要循环利用磁盘块,所以会出现较多的随机io.大量时间消耗在磁盘寻道时间上。

 

技术分享

 

-----------------------------------------------------------------------------------------------------------------------------------

PS:B+树就是在B树基础上加两个规定  1.子结点只存指针,子结点存数据  2.所有子结点从左到右用双链表串起来

    b+树原理,b+树在查询过程中应该是不会慢的,但如果数据插入比较无序的时候,比如先插入5 然后10000然后3然后800 这样跨度很大的数据的时候,就需要先“找到这个数据应该被插入的位置”,然后插入数据。这个查找到位置的过程,如果非常离散,那么就意味着每次查找的时候,他的子节点都不在内存中这时候就必须使用磁盘寻道时间查找。更新基本与插入是相同的


LSM树 

技术分享

    简单来说,就是放弃磁盘读性能来换取写的顺序性乍一看,似乎会认为读应该是大部分系统最应该保证的特性,所以用读换写似乎不是个好买卖。但别急,听我分析之  LSM树性能分析。

1.      内存的速度超磁盘1000倍以上。读取的性能提升,主要还是依靠内存命中率而非磁盘读的次数

2.      写入不占用磁盘的io,读取就能获取更长时间的磁盘io使用权,从而也可以提升读取效率。

     因此,虽然SSTable降低了了读的性能,但如果数据的读取命中率有保障的前提下,因为读取能够获得更多的磁盘io机会,因此读取性能基本没有降低,甚至还会有提升。而写入的性能则会获得较大幅度的提升,基本上是5~10倍左右。


LSM树 插入数据可以看作是一个N阶合并树。数据写操作(包括插入、修改、删除也是写)都在内存中进行

数据首先会插入内存中的树。当内存树的数据量超过设定阈值后,会进行合并操作。合并操作会从左至右便利内存中树的子节点 与 磁盘中树的子节点并进行合并,会用最新更新的数据覆盖旧的数据(或者记录为不同版本)。当被合并合并数据量达到磁盘的存储页大小时。会将合并后的数据持久化到磁盘,同时更新父节点对子节点的指针。

LSM树 读数据 磁盘中书的非子节点数据也被缓存到内存中。在需要进行读操作时,总是从内存中的排序树开始搜索,如果没有找到,就从磁盘上的排序树顺序查找。

在LSM树上进行一次数据更新不需要磁盘访问,在内存即可完成,速度远快于B+树。当数据访问以写操作为主,而读操作则集中在最近写入的数据上时,使用LSM树可以极大程度地减少磁盘的访问次数,加快访问速度。

LSM树 删除数据 前面讲了。LSM树所有操作都是在内存中进行的,那么删除并不是物理删除。而是一个逻辑删除,会在被删除的数据上打上一个标签,当内存中的数据达到阈值的时候,会与内存中的其他数据一起顺序写入磁盘。 这种操作会占用一定空间,但是LSM-Tree 提供了一些机制回收这些空间。


作为存储结构,B+树不是关系数据库所独有的,NoSQL数据库也可以使用B+树。同理,关系数据库也可以使用LSM,而且随着SSD硬盘的日趋成熟及大容量持久存储的内存技术的出现,相信B+树这一"古老"的存储结构会再次焕发青春。




小结

        二叉树:,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点;

        二叉树,B树:多路搜索树,每个结点存储M/2M个关键字,非叶子结点存储指向关键字范围的子结点; 所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

        B+树:在B树基础上,为子结点增加链表指针,所有关键字都在子结点中出现,非子结点作为子结点的索引;B+树总是到子结点才命中;

        B*树:(寻道)在B+树基础上,为非子结点也增加链表指针,将结点的最低利用率1/2提高到2/3

        LSM树:(传输) 在 B+树 基础上, 将读写分离、读操作先内存后磁盘、数据写操作(包括插入、修改、删除也是写)都在内存中进行。到达一定阈值的时候才会刷新到磁盘上。(HBase 刷新到 memStore me) 在大规模情况下,寻道明显比传输低效。

        (从磁盘使用方面讲,有两种不同的数据库范式:一种是寻道,一种是传输) RDBMS 通常都是寻道型的。主要是用于存储数据的B树 或 B+ 树结构引起的。 在磁盘寻道的速率级别上实现各种操作,通常每个访问需要 log(N)个寻道操作。



        God has given me a gift. Only one. I am the most complete fighter in the world. My whole life, I have trained. I must prove I am worthy of someting.                                                             rocky_24















二叉树、B树、B+树、B*树、LSM树

标签:

原文地址:http://www.cnblogs.com/rocky24/p/4798644.html

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!