标签:
A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.

Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format "left_index right_index", provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.
Output Specification:
For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.
Sample Input:9 1 6 2 3 -1 -1 -1 4 5 -1 -1 -1 7 -1 -1 8 -1 -1 73 45 11 58 82 25 67 38 42Sample Output:
58 25 82 11 38 67 45 73 42
#include<iostream>#include<vector>#include<algorithm>#include<queue>using namespace std;struct Node {int val;int left;int right;};Node node[101];vector<Node*> nnn;vector<int> num;void Inorder(int i) {if (node[i].left != -1) {Inorder(node[i].left);// nnn.push_back(node[node[i].left]);}Node *p = (Node*)malloc(sizeof(Node));p = &node[i];nnn.push_back(p);if (node[i].right != -1) {Inorder(node[i].right);// nnn.push_back(node[node[i].right]);}}int main() {int n;cin >> n;for (int i = 0; i < n; i++) {int l, r;cin >> l >> r;node[i].left = l;node[i].right = r;}for (int i = 0; i < n; i++) {int temp;cin >> temp;num.push_back(temp);}sort(num.begin(), num.end());Inorder(0);for (int i = 0; i < n; i++) {//*nnn[i].val = num[i];nnn[i]->val = num[i];}queue<Node> q;q.push(node[0]);while (true){if (q.front().left != -1) {q.push(node[q.front().left]);}if (q.front().right != -1) {q.push(node[q.front().right]);}cout << q.front().val;q.pop();if (q.empty())break;cout << " ";}return 0;}
#include<iostream>#include<queue>#include<vector>#include<algorithm>#pragma warning(disable:4996)using namespace std;struct Node {int val;int left = -1;int right = -1;};vector<int> num;Node node[101];int n;int cnt = 0;void Inorder(int root) {if (node[root].left != -1)Inorder(node[root].left);node[root].val = num[cnt];cnt++;if (node[root].right != -1)Inorder(node[root].right);}int main(void) {freopen("Text.txt", "r", stdin);cin >> n;for (int i = 0; i < n; i++) {int l, r;cin >> l >> r;node[i].left = l;node[i].right = r;}for (int i = 0; i < n; i++) {int temp;cin >> temp;num.push_back(temp);}sort(num.begin(), num.end());Inorder(0);queue<Node> q;q.push(node[0]);while (true){if (q.front().left != -1)q.push(node[q.front().left]);if (q.front().right != -1)q.push(node[q.front().right]);cout << q.front().val;q.pop();if (q.empty())break;cout << " ";}return 0;}
1099. Build A Binary Search Tree (30)
标签:
原文地址:http://www.cnblogs.com/zzandliz/p/5023350.html