标签:
Now,given the equation 8x^4 + 7x^3 + 2x^2 + 3x + 6 == Y,can you find its solution between 0 and 100;
Now please try your lucky.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has a real number Y (fabs(Y) <= 1e10);
Output
For each test case, you should just output one real number(accurate up to 4 decimal places),which is the solution of the equation,or “No solution!”,if there is no solution for the equation between 0 and 100.
Sample Input
2
100
-4
Sample Output
1.6152
No solution!
求解方程的简单水题
简单的水题,使用二分法即可。但需要注意浮点数比较时的精度,我写的是1e-5,如果精度太高的话会超时的
#include<iostream>#include<stdio.h>#include<cmath>#include<iomanip>using namespace std;double m, res = 0;int ji = 0;double f(double res){return res*res*res*res * 8 + res*res*res * 7 + res*res * 2 + res * 3 + 6;}int main(){//cin.sync_with_stdio(false);//freopen("date.in", "r", stdin);//freopen("date.out", "w", stdout);int N, temp;double b, e, tem = 50;scanf("%d", &N);for (int i = 0; i<N; i++){b = 0, e = 100, tem = 50;cin >> m;if (m<6 || m>807020306)//cout << "No solution!" << endl;printf("No solution!\n");else{while (fabs(f(tem) - m) >= 1e-5)if (f(tem)>m){e = tem;tem = (b + e) / 2;}else{b = tem;tem = (b + e) / 2;}//cout << fixed << setprecision(4) << tem << endl;printf("%0.4f\n", tem);}}}
标签:
原文地址:http://www.cnblogs.com/liuzhanshan/p/5405713.html