标签:
它们都是对表达式的记法,因此也被称为前缀记法、中缀记法和后缀记法。它们之间的区别在于运算符相对与操作数的位置不同:前缀表达式的运算符位于与其相关的操作数之前;中缀和后缀同理。
举例:
(3 + 4) × 5 - 6 就是中缀表达式
- × + 3 4 5 6 前缀表达式
3 4 + 5 × 6 - 后缀表达式
中缀表达式(中缀记法)
中缀表达式是一种通用的算术或逻辑公式表示方法,操作符以中缀形式处于操作数的中间。中缀表达式是人们常用的算术表示方法。
虽然人的大脑很容易理解与分析中缀表达式,但对计算机来说中缀表达式却是很复杂的,因此计算表达式的值时,通常需要先将中缀表达式转换为前缀或后缀表达式,然后再进行求值。对计算机来说,计算前缀或后缀表达式的值非常简单。
前缀表达式(前缀记法、波兰式)
前缀表达式的运算符位于操作数之前。
前缀表达式的计算机求值:
从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素 op 次顶元素),并将结果入栈;重复上述过程直到表达式最左端,最后运算得出的值即为表达式的结果。
例如前缀表达式“- × + 3 4 5 6”:
(1) 从右至左扫描,将6、5、4、3压入堆栈;
(2) 遇到+运算符,因此弹出3和4(3为栈顶元素,4为次顶元素,注意与后缀表达式做比较),计算出3+4的值,得7,再将7入栈;
(3) 接下来是×运算符,因此弹出7和5,计算出7×5=35,将35入栈;
(4) 最后是-运算符,计算出35-6的值,即29,由此得出最终结果。
可以看出,用计算机计算前缀表达式的值是很容易的。
将中缀表达式转换为前缀表达式:
遵循以下步骤:
(1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
(2) 从右至左扫描中缀表达式;
(3) 遇到操作数时,将其压入S2;
(4) 遇到运算符时,比较其与S1栈顶运算符的优先级:
(4-1) 如果S1为空,或栈顶运算符为右括号“)”,则直接将此运算符入栈;
(4-2) 否则,若优先级比栈顶运算符的较高或相等,也将运算符压入S1;
(4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较;
(5) 遇到括号时:
(5-1) 如果是右括号“)”,则直接压入S1;
(5-2) 如果是左括号“(”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到右括号为止,此时将这一对括号丢弃;
(6) 重复步骤(2)至(5),直到表达式的最左边;
(7) 将S1中剩余的运算符依次弹出并压入S2;
(8) 依次弹出S2中的元素并输出,结果即为中缀表达式对应的前缀表达式。
例如,将中缀表达式“1+((2+3)×4)-5”转换为前缀表达式的过程如下:
| 扫描到的元素 | S2(栈底->栈顶) | S1 (栈底->栈顶) | 说明 |
| 5 | 5 | 空 | 数字,直接入栈 |
| - | 5 | - | S1为空,运算符直接入栈 |
| ) | 5 | - ) | 右括号直接入栈 |
| 4 | 5 4 | - ) | 数字直接入栈 |
| × | 5 4 | - ) × | S1栈顶是右括号,直接入栈 |
| ) | 5 4 | - ) × ) | 右括号直接入栈 |
| 3 | 5 4 3 | - ) × ) | 数字 |
| + | 5 4 3 | - ) × ) + | S1栈顶是右括号,直接入栈 |
| 2 | 5 4 3 2 | - ) × ) + | 数字 |
| ( | 5 4 3 2 + | - ) × | 左括号,弹出运算符直至遇到右括号 |
| ( | 5 4 3 2 + × | - | 同上 |
| + | 5 4 3 2 + × | - + | 优先级与-相同,入栈 |
| 1 | 5 4 3 2 + × 1 | - + | 数字 |
| 到达最左端 | 5 4 3 2 + × 1 + - | 空 | S1中剩余的运算符 |
因此结果为“- + 1 × + 2 3 4 5”。
package com.ztesoft.zsmart.datastruct.stack;
import java.util.Stack;
public class InfixToPrefixExp {
public static String ops = "()*/%+-";
public static void main(String[] args) {
System.out.println(infix2prefix("1+((2+3)*4)-5"));
}
/**
* 中缀表达式转换为前缀表达式: <br>
*
* @author wang.jun<br>
* @taskId <br>
* @param exp
* @return <br>
*/
public static String infix2prefix(String exp) {
StringBuffer result = new StringBuffer();
// 把表达式入栈
Stack<Character> expStack = exp2Stack(exp);
// 初始化两个栈 一个操作符栈 一个中间结果栈
Stack<String> s1 = new Stack<String>();
Stack<String> s2 = new Stack<String>();
// 从右向左扫描表达式
while (!expStack.isEmpty()) {
String expPart = read(expStack);
// 判断是否为操作数
if (!isOperator(expPart)) {
s2.push(expPart);
}
else {
opInStack(s1, s2, expPart);
}
}
// 将s1中剩余操作符入s2
while (!s1.isEmpty()) {
s2.push(s1.pop());
}
// 处理结果
while (!s2.isEmpty()) {
result.append(s2.pop());
}
return result.toString();
}
/**
* 操作符入栈: <br>
*
* @author wang.jun<br>
* @taskId <br>
* @param s1
* @param s2
* @param ch <br>
*/
public static void opInStack(Stack<String> s1, Stack<String> s2, String ch) {
// 遇到括号时:
if ("(".equals(ch) || ")".equals(ch)) {
// 如果是左括号直接入s1
if (")".equals(ch)) {
s1.push(ch);
}
else {
// 如果是右括号 则依次弹出s1栈顶运算符,并压入s2 直到遇到右括号为至 此时一对括号废弃
String ch1 = "";
do {
ch1 = s1.pop();
if (")".equals(ch1)) {
break;
}
else {
s2.push(ch1);
}
}
while (true);
}
}
else {
// 如果s1为空或是栈顶为右括号) 则直接入操作数栈
if (s1.isEmpty() || s1.lastElement().equals(")")) {
s1.push(ch);
}
else {
String s1Top = s1.lastElement();
if (compareOpLevel(ch, s1Top)) { // 若优先级比栈顶运算符的较高或相等,也将运算符压入S1;
s1.push(ch);
}
else {
do {
s1Top = s1.pop();
s2.push(s1Top);
s1Top = s1.lastElement();
if (compareOpLevel(ch, s1Top)) { // 若优先级比栈顶运算符的较高或相等,也将运算符压入S1;
s1.push(ch);
break;
}
}
while (true);
}
}
}
}
/**
* 从栈中读取操作数 或是操作操作符 : <br>
* 操作数由一个或是多个数据组成 操作符由一个字符组成
*
* @author wang.jun<br>
* @taskId <br>
* @param stack
* @return <br>
*/
public static String read(Stack<Character> stack) {
StringBuffer sb = new StringBuffer();
char ch;
do {
ch = stack.pop();
sb.append(ch);
if (!stack.isEmpty()) {
char ch_next = stack.lastElement();
if (isOperator(ch_next) || isOperator(ch)) {
break;
}
}
else {
break;
}
}
while (!stack.isEmpty());
return sb.toString();
}
/**
* 判断当前字符是不是操作符: <br>
*
* @author wang.jun<br>
* @taskId <br>
* @param op
* @return <br>
*/
public static boolean isOperator(Character ch) {
return ops.indexOf(ch.toString()) > -1;
}
/**
* 判断当前字符是不是操作符: <br>
*
* @author wang.jun<br>
* @taskId <br>
* @param op
* @return <br>
*/
public static boolean isOperator(String exp) {
return exp.length() == 1 && ops.indexOf(exp.toString()) > -1;
}
/**
* 把表达式入栈: <br>
*
* @author wang.jun<br>
* @taskId <br>
* @param exp
* @return <br>
*/
public static Stack<Character> exp2Stack(String exp) {
Stack<Character> stack = new Stack<Character>();
for (int i = 0; i < exp.length(); i++) {
stack.push(exp.charAt(i));
}
return stack;
}
/**
* 判断运算符优先级 Description: <br>
*
* @author wang.jun<br>
* @taskId <br>
* @param op1
* @param op2
* @return <br>
*/
public static boolean compareOpLevel(String op1, String op2) {
if (ops.indexOf(op1) < ops.indexOf(op2)) {
return true;
}
return false;
}
}
后缀表达式(后缀记法、逆波兰式)
后缀表达式与前缀表达式类似,只是运算符位于操作数之后。
后缀表达式的计算机求值:
与前缀表达式类似,只是顺序是从左至右:
从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(次顶元素 op 栈顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果。
例如后缀表达式“3 4 + 5 × 6 -”:
(1) 从左至右扫描,将3和4压入堆栈;
(2) 遇到+运算符,因此弹出4和3(4为栈顶元素,3为次顶元素,注意与前缀表达式做比较),计算出3+4的值,得7,再将7入栈;
(3) 将5入栈;
(4) 接下来是×运算符,因此弹出5和7,计算出7×5=35,将35入栈;
(5) 将6入栈;
(6) 最后是-运算符,计算出35-6的值,即29,由此得出最终结果。
将中缀表达式转换为后缀表达式:
与转换为前缀表达式相似,遵循以下步骤:
(1) 初始化两个栈:运算符栈S1和储存中间结果的栈S2;
(2) 从左至右扫描中缀表达式;
(3) 遇到操作数时,将其压入S2;
(4) 遇到运算符时,比较其与S1栈顶运算符的优先级:
(4-1) 如果S1为空,或栈顶运算符为左括号“(”,则直接将此运算符入栈;
(4-2) 否则,若优先级比栈顶运算符的高,也将运算符压入S1(注意转换为前缀表达式时是优先级较高或相同,而这里则不包括相同的情况);
(4-3) 否则,将S1栈顶的运算符弹出并压入到S2中,再次转到(4-1)与S1中新的栈顶运算符相比较;
(5) 遇到括号时:
(5-1) 如果是左括号“(”,则直接压入S1;
(5-2) 如果是右括号“)”,则依次弹出S1栈顶的运算符,并压入S2,直到遇到左括号为止,此时将这一对括号丢弃;
(6) 重复步骤(2)至(5),直到表达式的最右边;
(7) 将S1中剩余的运算符依次弹出并压入S2;
(8) 依次弹出S2中的元素并输出,结果的逆序即为中缀表达式对应的后缀表达式(转换为前缀表达式时不用逆序)。
例如,将中缀表达式“1+((2+3)×4)-5”转换为后缀表达式的过程如下:
| 扫描到的元素 | S2(栈底->栈顶) | S1 (栈底->栈顶) | 说明 |
| 1 | 1 | 空 | 数字,直接入栈 |
| + | 1 | + | S1为空,运算符直接入栈 |
| ( | 1 | + ( | 左括号,直接入栈 |
| ( | 1 | + ( ( | 同上 |
| 2 | 1 2 | + ( ( | 数字 |
| + | 1 2 | + ( ( + | S1栈顶为左括号,运算符直接入栈 |
| 3 | 1 2 3 | + ( ( + | 数字 |
| ) | 1 2 3 + | + ( | 右括号,弹出运算符直至遇到左括号 |
| × | 1 2 3 + | + ( × | S1栈顶为左括号,运算符直接入栈 |
| 4 | 1 2 3 + 4 | + ( × | 数字 |
| ) | 1 2 3 + 4 × | + | 右括号,弹出运算符直至遇到左括号 |
| - | 1 2 3 + 4 × + | - | -与+优先级相同,因此弹出+,再压入- |
| 5 | 1 2 3 + 4 × + 5 | - | 数字 |
| 到达最右端 | 1 2 3 + 4 × + 5 - | 空 | S1中剩余的运算符 |
因此结果为“1 2 3 + 4 × + 5 -”(注意需要逆序输出)。
编写Java程序将一个中缀表达式转换为前缀表达式和后缀表达式,并计算表达式的值。其中的toPolishNotation()方法将中缀表达式转换为前缀表达式(波兰式)、toReversePolishNotation()方法则用于将中缀表达式转换为后缀表达式(逆波兰式):
标签:
原文地址:http://www.cnblogs.com/wangjuneng/p/5416386.html