标签:
终于又回到熟悉的Round了
设个未知数,解方程,还好没有hack点
#include <bits/stdc++.h>
typedef long long ll;
const int N = 1e5 + 5;
const double PI = acos (-1.0);
int main() {
double d, h, v, e; scanf ("%lf%lf%lf%lf", &d, &h, &v, &e);
double V = PI * (d / 2.0) * (d / 2.0) * h;
double addv = PI * (d / 2.0) * (d / 2.0) * e;
if (addv > v) {
puts ("NO");
} else {
double t = -V / (addv - v);
puts ("YES");
printf ("%.8f\n", t);
}
return 0;
}
题意:求增加最小长度的一根木棍,使得构成一个多边形。
分析:那么构成三角形,原来n条木棍分成A,B两边,A和B接近(A<=B),那么另一条边满足A + C > B,即C = B +1 - A
#include <bits/stdc++.h>
typedef long long ll;
const int N = 1e5 + 5;
int a[N];
int main() {
int n; scanf ("%d", &n);
ll sum = 0;
for (int i=0; i<n; ++i) {
scanf ("%d", a+i);
sum += a[i];
}
std::sort (a, a+n);
ll del = 1000001000;
ll A, B, presum = 0;
for (int i=0; i<n; ++i) {
presum += a[i];
ll res = sum - presum;
ll tmp = presum - res;
if (abs (tmp) < del) {
if (tmp < 0) {
del = -tmp;
A = presum;
B = res;
} else {
del = tmp;
A = res;
B = presum;
}
}
}
ll C = B + 1 - A;
printf ("%I64d\n", C);
return 0;
}
题意:问后缀由若干个长度为2或3的子串构成,且相邻的子串不能相同。
分析:The only restriction — it is not allowed to append the same string twice in a row! 英语太渣不知道这是连续,相邻的意思。那么dp[i][0]表示i开始长度为2的子串能否可行,如果可行,那么dp[i-3][1]一定可行,因为长度不相等;还有如果长度相等的判断一下,即dp[i-2][0]。
#include <bits/stdc++.h>
const int N = 1e4 + 5;
bool dp[N][2];
int main() {
std::string str;
std::cin >> str;
int n = str.length ();
dp[n-2][0] = dp[n-3][1] = true;
std::set<std::string> ans;
for (int i=n-1; i>=5; --i) {
if (dp[i][0]) {
ans.insert (str.substr (i, 2));
dp[i-3][1] = true;
if (str.substr (i-2, 2) != str.substr (i, 2)) {
dp[i-2][0] = true;
}
}
if (dp[i][1]) {
ans.insert (str.substr (i, 3));
dp[i-2][0] = true;
if (str.substr (i-3, 3) != str.substr (i, 3)) {
dp[i-3][1] = true;
}
}
}
std::cout << ans.size () << ‘\n‘;
for (auto s: ans) {
std::cout << s << ‘\n‘;
}
return 0;
}
题意:找4个点按照顺序走,a->b->c->d,每次点到下一个点走的是最短路,问走的长度总和最大是多少。
分析:先计算dis(u, v),枚举b和c,对于b来说在反向图中找距离最远的点,因为a!=b a!=c,所以存最优的前3个点;对于c来说在原图中找距离最远的点,存最优的前4个点。
#include <bits/stdc++.h>
const int N = 3e3 + 5;
const int M = 5e3 + 5;
const int INF = 0x3f3f3f3f;
int dis[N][N];
std::vector<int> G[N], rG[N];
std::vector<std::pair<int, int> > bin[N], bout[N];
bool vis[N];
int n, m;
void BFS() {
memset (dis, INF, sizeof (dis));
for (int i=1; i<=n; ++i) {
std::queue<int> que;
dis[i][i] = 0;
que.push (i);
while (!que.empty ()) {
int u = que.front (); que.pop ();
for (auto v: G[u]) {
if (dis[i][v] > dis[i][u] + 1) {
dis[i][v] = dis[i][u] + 1;
que.push (v);
}
}
}
}
}
void sort_out() {
for (int i=1; i<=n; ++i) {
memset (vis, false, sizeof (vis));
vis[i] = true;
bout[i].push_back (std::make_pair (0, i));
std::queue<std::pair<int, int> > que;
que.push (std::make_pair (0, i));
while (!que.empty ()) {
std::pair<int, int> pu = que.front (); que.pop ();
for (auto v: G[pu.second]) {
if (!vis[v]) {
vis[v] = true;
bout[i].push_back (std::make_pair (pu.first + 1, v));
que.push (std::make_pair (pu.first + 1, v));
}
}
}
std::sort (bout[i].begin (), bout[i].end (), std::greater<std::pair<int, int> > ()); //dis[i][v], v
if (bout[i].size () > 4) {
bout[i].resize (4);
}
}
}
void sort_in() {
for (int i=1; i<=n; ++i) {
memset (vis, false, sizeof (vis));
vis[i] = true;
bin[i].push_back (std::make_pair (0, i));
std::queue<std::pair<int, int> > que;
que.push (std::make_pair (0, i));
while (!que.empty ()) {
std::pair<int, int> pu = que.front (); que.pop ();
for (auto v: rG[pu.second]) {
if (!vis[v]) {
vis[v] = true;
bin[i].push_back (std::make_pair (pu.first + 1, v));
que.push (std::make_pair (pu.first + 1, v));
}
}
}
std::sort (bin[i].begin (), bin[i].end (), std::greater<std::pair<int, int> > ()); //dis[v][i], v
if (bin[i].size () > 3) {
bin[i].resize (3);
}
}
}
int main() {
scanf ("%d%d", &n, &m);
for (int u, v, i=0; i<m; ++i) {
scanf ("%d%d", &u, &v);
G[u].push_back (v);
rG[v].push_back (u);
}
BFS ();
sort_in ();
sort_out ();
int a, b, c, d;
int best = 0;
for (int i=1; i<=n; ++i) {
for (int j=1; j<=n; ++j) {
if (i == j || dis[i][j] == INF) {
continue;
}
int k, l;
for (int ii=bin[i].size ()-1; ii>=0; --ii) {
int tot = dis[i][j];
std::pair<int, int> &x = bin[i][ii];
if (x.second != i && x.second != j) {
k = x.second;
tot += x.first;
for (int jj=bout[j].size ()-1; jj>=0; --jj) {
std::pair<int, int> &y = bout[j][jj];
if (y.second != i && y.second != j && y.second != k) {
l = y.second;
tot += y.first;
if (best < tot) {
best = tot;
a = k; b = i; c = j; d = l;
}
tot -= y.first;
}
}
}
}
}
}
printf ("%d %d %d %d\n", a, b, c, d);
return 0;
}
Codeforces Round #349 (Div. 2)
标签:
原文地址:http://www.cnblogs.com/Running-Time/p/5448753.html