码迷,mamicode.com
首页 > 其他好文 > 详细

记一次失败的kaggle比赛(3):失败在什么地方,贪心筛选特征、交叉验证、blending

时间:2016-05-03 12:45:19      阅读:1456      评论:0      收藏:0      [点我收藏+]

标签:


今天这个比赛结束了,结果可以看:https://www.kaggle.com/c/santander-customer-satisfaction/leaderboard

public结果:

技术分享

技术分享

private结果:

技术分享

技术分享



首先对比private和public的结果,可以发现:

1)几乎所有的人都overfitting了;或者说private的另一半测试数据比public的那一半测试数据更不规律。

2)private的前十名有5个是在public中排不进前几百,有四个甚至排在1000名到2000名之间;说明使用一个正确的方法比一味地追求public上的排名更重要!!!

3)我自己从public的第2323名调到private的1063名,提高了1260个名次;作为第一次参加这种比赛的人,作为一个被各种作业困扰的人,能在有5236个队伍中、5831个选手中取得这样的成绩,个人还比较满意,毕竟经验不足,做了很多冤枉工作。

4)说回最关键的,什么叫做“一个正确的方法”???这也是我想探讨的失败之处:

1、选择正确的模型:因为对数据不了解,所以直接尝试了以下模型:

models=[
    RandomForestClassifier(n_estimators=1999, criterion='gini', n_jobs=-1, random_state=SEED),
    RandomForestClassifier(n_estimators=1999, criterion='entropy', n_jobs=-1, random_state=SEED),
    ExtraTreesClassifier(n_estimators=1999, criterion='gini', n_jobs=-1, random_state=SEED),
    ExtraTreesClassifier(n_estimators=1999, criterion='entropy', n_jobs=-1, random_state=SEED),
    GradientBoostingClassifier(learning_rate=0.1, n_estimators=101, subsample=0.6, max_depth=8, random_state=SEED)
]
实际上,我这里想说的是,这些模型的速度都非常慢!最开始,我觉得方便就一直没有配置xgBoost,这种选择实际上浪费了非常多的时间;后来使用了xgBoost,才得到了最终的这个结果。所以说,不了解数据时,选择一个速度快的、泛化能力强的模型很重要,xgBoost是首选。

2、上来不经过任何思考就开始使用各种复杂的模型,甚至连一个baseline都没有:对,我就是这样,因为第一次,确实缺乏经验;因为复杂的模型容易过拟合,所以你越比陷得越深;而且复杂模型一般花费时间比较多,真是浪费青春;这一点我是在快要没时间的时候才意识到的;另外,我的最终结果确实是通过一个非常简单的模型得到的。所以说,开始时先鲁一个简单的模型,以此为参照构建之后的模型。什么是简单的模型:原始数据集(或者稍微做了一点处理的数据集,比如去常数列、补缺失值、归一化等)、logistic regression或者简单的svm、xgBoost。

3、相信交叉验证的结果:不要只将数据集划分成两份,因为交叉验证时你会发现有些fold效果非常好,AUC可以到0.85左右,而有些fold则非常差,0.82都不到。

4、关于noise的问题:一直没找到好的处理办法,所以最终效果不是很好也正常。

5、关于一堆零的处理办法:归一化特征,这个非常有必要!否则你之后的特征工程都会发现效果很差,因为0+k=k、0*k=0、0^2=0;具体怎么归一化,我就不多说了,点到为止。

6、另外还有一些小细节,比如筛选特征时,因为你的最终模型是GBDT,那你筛选特征时就使用GBDT,否则你使用LR筛选的有效特征可能对GBDT模型来说并不是有效的;还有很多很多,真的是在实践中才能意识到,比如特征处理是在train+test上还是单独在train上这些问题,理论上只应该在train上,因为我们认为test数据集是不知道的,但是对于这种比赛,你知道了test,那还是用上的好。。。。不多说了,大家还是多实践好;科研再忙,一学期玩一个比赛还是有时间的。。。。。。。。

7、说了这么多没用的,给大家上一点代码,主要包括贪心筛选特征、交叉验证、blending三部分关键点,但是整个代码是完整的:

#!usr/bin/env python
#-*- coding:utf-8 -*-

import pandas as pd
import numpy as np

from sklearn import preprocessing, cross_validation, metrics
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier, GradientBoostingClassifier
from sklearn.cross_validation import StratifiedKFold
from sklearn.linear_model import LogisticRegression
from sklearn.externals import joblib





SEED=1126
nFold=5





def SaveFile(submitID, testSubmit, fileName="submit.csv"):
    content="ID,TARGET";
    for i in range(submitID.shape[0]):
        content+="\n"+str(submitID[i])+","+str(testSubmit[i])
    file=open(fileName,"w")
    file.write(content)
    file.close()


def CrossValidationScore(data, label, clf, nFold=5, scoreType="accuracy"):
    if scoreType=="accuracy":
        scores=cross_validation.cross_val_score(clf,data,label,cv=nFold)
        #print("mean accuracy: %0.4f (+/- %0.4f)" % (scores.mean(), scores.std() * 2))
        return scores.mean()
    elif scoreType=="auc":
        meanAUC=0.0
        kfcv=StratifiedKFold(y=label, n_folds=nFold, shuffle=True, random_state=SEED)
        for j, (trainI, cvI) in enumerate(kfcv):
            print "Fold ", j, "^"*20
            Xtrain=data[trainI]
            Xcv=data[cvI]
            Ytrain=label[trainI]
            Ycv=label[cvI]
            clf.fit(Xtrain,Ytrain)
            probas=clf.predict_proba(Xcv)
            aucScore=metrics.roc_auc_score(Ycv, probas[:,1])
            #print "auc (fold %d/%d): %0.4f" % (i+1,nFold, aucScore)
            meanAUC+=aucScore
        #print "mean auc: %0.4f" % (meanAUC/nFold)
        return meanAUC/nFold

def GreedyFeatureAdd(clf, data, label, scoreType="accuracy", goodFeatures=[], maxFeaNum=100, eps=0.00005):
    scoreHistorys=[]
    while len(scoreHistorys)<=2 or scoreHistorys[-1]>scoreHistorys[-2]+eps:
        if len(goodFeatures)==maxFeaNum:
            break
        scores=[]        
        for testFeaInd in range(data.shape[1]):
            if testFeaInd not in goodFeatures:
                #tempFeaInds=goodFeatures.append(testFeaInd);
                tempFeaInds=goodFeatures+[testFeaInd]
                tempData=data[:,tempFeaInds]
                score=CrossValidationScore(tempData, label, clf, nFold, scoreType)
                scores.append((score,testFeaInd))
                print "feature: "+str(testFeaInd)+"==>mean "+scoreType+": %0.4f" % score
        goodFeatures.append(sorted(scores)[-1][1]) #only add the feature which get "the biggest gain score" 
        scoreHistorys.append(sorted(scores)[-1][0]) #only add the biggest gain score
        #print scoreHistorys
        print "current features: %s" % sorted(goodFeatures)
    if len(goodFeatures)<maxFeaNum:
        goodFeatures.pop(-1) #remove last added feature from goodFeatures
    #goodFeatures=sorted(goodFeatures) don't sort at this point, we may use the first 100 "bigger gain score" feature
    print "selected %d features: %s" % (len(goodFeatures), goodFeatures)
    return goodFeatures #a feature list




    
    
trainD=pd.read_csv("train.csv")
trainY=np.array(trainD.iloc[:,-1])
trainX=np.array(trainD.iloc[:,1:-1]) #drop ID and TARGET

testD=pd.read_csv("test.csv")
submitID=np.array(testD.iloc[:,0]) #ID column
testX=np.array(testD.iloc[:,1:])#drop ID





#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! better use a RFC or GBC as the clf
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! because the final predict model are those two
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! we should select better feature for RFC or GBC, not for LR
clf = LogisticRegression(class_weight='balanced', penalty='l2', n_jobs=-1)
selectedFeaInds=GreedyFeatureAdd(clf, trainX, trainY, scoreType="auc", goodFeatures=[], maxFeaNum=150)
joblib.dump(selectedFeaInds, 'modelPersistence/selectedFeaInds.pkl')
#selectedFeaInds=joblib.load('modelPersistence/selectedFeaInds.pkl') 
trainX=trainX[:,selectedFeaInds]
testX=testX[:,selectedFeaInds]
print trainX.shape





trainN=len(trainY)

print "Creating train and test sets for blending..."
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! always use a seed for randomized procedures
models=[
    RandomForestClassifier(n_estimators=1999, criterion='gini', n_jobs=-1, random_state=SEED),
    RandomForestClassifier(n_estimators=1999, criterion='entropy', n_jobs=-1, random_state=SEED),
    ExtraTreesClassifier(n_estimators=1999, criterion='gini', n_jobs=-1, random_state=SEED),
    ExtraTreesClassifier(n_estimators=1999, criterion='entropy', n_jobs=-1, random_state=SEED),
    GradientBoostingClassifier(learning_rate=0.1, n_estimators=101, subsample=0.6, max_depth=8, random_state=SEED)
]
#StratifiedKFold is a variation of k-fold which returns stratified folds: each set contains approximately the same percentage of samples of each target class as the complete set.
#kfcv=KFold(n=trainN, n_folds=nFold, shuffle=True, random_state=SEED)
kfcv=StratifiedKFold(y=trainY, n_folds=nFold, shuffle=True, random_state=SEED)
dataset_trainBlend=np.zeros( ( trainN, len(models) ) )
dataset_testBlend=np.zeros( ( len(testX), len(models) ) )
meanAUC=0.0
for i, model in enumerate(models):
    print "model ", i, "=="*20
    dataset_testBlend_j=np.zeros( ( len(testX), nFold ) )
    for j, (trainI, testI) in enumerate(kfcv):
        print "Fold ", j, "^"*20
        Xtrain=trainX[trainI]
        Xcv=trainX[testI]
        Ytrain=trainY[trainI]
        Ycv=trainY[testI]
        model.fit(Xtrain,Ytrain)
        Ypred=model.predict_proba(Xcv)[:,1]
        dataset_trainBlend[testI, i]=Ypred
        dataset_testBlend_j[:,j]=model.predict_proba(testX)[:,1]
    dataset_testBlend[:,i]=dataset_testBlend_j.mean(1)
    aucScore=metrics.roc_auc_score(trainY, dataset_trainBlend[:, i])
    print "model %d, cv mean auc: %0.9f" % (i, aucScore)
    meanAUC+=aucScore
print "ALL models, cv mean auc: %0.9f" % (meanAUC/len(models))
'''
0.7786
0.7814
0.7230
0.7239
0.8199
mean auc:0.7654
'''



print "Blending models..."
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! if we want to predict some real values, use RidgeCV
model=LogisticRegression(n_jobs=-1)
C=np.linspace(0.001,1.0,1000)
trainAucList=[]
for c in C:
    model.C=c
    model.fit(dataset_trainBlend,trainY)
    trainProba=model.predict_proba(dataset_trainBlend)[:,1]
    trainAuc=metrics.roc_auc_score(trainY, trainProba)
    trainAucList.append((trainAuc, c))
sortedtrainAucList=sorted(trainAucList)
for trainAuc, c in sortedtrainAucList:
    print "c=%f => trainAuc=%f" % (c, trainAuc)
'''
C  =>  trainProba
0.0001 => 0.126..
0.001 => 0.807188
0.01 => 0.815833
0.03 => 0.820674
0.04 => 0.821295
0.05 => 0.821439 ***
0.06 => 0.821129
0.07 => 0.820521
0.08 => 0.820067
0.1 => 0.819036
0.3 => 0.813210
1.0 => 0.809002
10.0 => 807334
'''




    
model.C=sortedtrainAucList[-1][1] #0.05
model.fit(dataset_trainBlend,trainY)
trainProba=model.predict_proba(dataset_trainBlend)[:,1]
print "train auc: %f" % metrics.roc_auc_score(trainY, trainProba)  #0.821439
print "model.coef_: ", model.coef_


print "Predict and saving results..."
submitProba=model.predict_proba(dataset_testBlend)[:,1]
df=pd.DataFrame(submitProba)
print df.describe()
SaveFile(submitID, submitProba, fileName="1submit.csv") #0.815536 [blending makes result < GBC 0.8199]
#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Blending models ISN'T a good idea when one model OBVIOUSLY better than others...
'''
count  75818.000000
mean       0.039187
std        0.033691
min        0.024876
25%        0.028400
50%        0.029650
75%        0.034284
max        0.806586
'''

print "MinMaxScaler predictions to [0,1]..."
mms=preprocessing.MinMaxScaler(feature_range=(0, 1))
submitProba=mms.fit_transform(submitProba)
df=pd.DataFrame(submitProba)
print df.describe()
SaveFile(submitID, submitProba, fileName="1submitScale.csv") #0.815536
'''
count  75818.000000
mean       0.018307
std        0.043099
min        0.000000
25%        0.004509
50%        0.006107
75%        0.012035
max        1.000000
'''


其实还有很多话想说,不过这个文章就到这边吧,毕竟一个1000+的人的说教会让人觉得烦;以后再参加其他比赛了一起说吧。


http://blog.kaggle.com/2016/02/22/profiling-top-kagglers-leustagos-current-7-highest-1/

和大牛不谋而合:

What does your iteration cycle look like?

  1. Understand the dataset. At least enough to build a consistent validation set.
  2. Build a consistent validation set and test its relationship with the leaderboard score.
  3. Build a very simple model.
  4. Look for approaches used in similar competitions in the past.
  5. Start feature engineering, step by step to create a strong model.
  6. Think about ensembling, be it by creating alternate versions of the feature set or using different modeling techniques (xgb, rf, linear regression, neural nets, factorization machines, etc).


记一次失败的kaggle比赛(3):失败在什么地方,贪心筛选特征、交叉验证、blending

标签:

原文地址:http://blog.csdn.net/mmc2015/article/details/51301865

(0)
(0)
   
举报
评论 一句话评论(0
登录后才能评论!
© 2014 mamicode.com 版权所有  联系我们:gaon5@hotmail.com
迷上了代码!