标签:
本期内容:
1 在线动态计算分类最热门商品案例回顾与演示
2 基于案例贯通Spark Streaming的运行源码
一切不能进行实时流处理的数据都是无效的数据。在流处理时代,SparkStreaming有着强大吸引力,而且发展前景广阔,加之Spark的生态系统,Streaming可以方便调用其他的诸如SQL,MLlib等强大框架,它必将一统天下。
Spark Streaming运行时与其说是Spark Core上的一个流式处理框架,不如说是Spark Core上的一个最复杂的应用程序。如果可以掌握Spark streaming这个复杂的应用程序,那么其他的再复杂的应用程序都不在话下了。这里选择Spark Streaming作为版本定制的切入点也是大势所趋。
第一部分:案例赏析
package com.dt.spark.sparkstreaming
import com.robinspark.utils.ConnectionPool
import org.apache.spark.SparkConf
import org.apache.spark.sql.Row
import org.apache.spark.sql.hive.HiveContext
import org.apache.spark.sql.types.{IntegerType, StringType, StructField, StructType}
import org.apache.spark.streaming.{Seconds, StreamingContext}
/**
* 使用Spark Streaming+Spark SQL来在线动态计算电商中不同类别中最热门的商品排名,例如手机这个类别下面最热门的三种手机、电视这个类别
* 下最热门的三种电视,该实例在实际生产环境下具有非常重大的意义;
*
* @author DT大数据梦工厂
* 新浪微博:http://weibo.com/ilovepains/
*
*
* 实现技术:Spark Streaming+Spark SQL,之所以Spark Streaming能够使用ML、sql、graphx等功能是因为有foreachRDD和Transform
* 等接口,这些接口中其实是基于RDD进行操作,所以以RDD为基石,就可以直接使用Spark其它所有的功能,就像直接调用API一样简单。
* 假设说这里的数据的格式:user item category,例如Rocky Samsung Android
*/
object OnlineTheTop3ItemForEachCategory2DB {
def main(args: Array[String]){
/**
* 第1步:创建Spark的配置对象SparkConf,设置Spark程序的运行时的配置信息,
*/
val conf = new SparkConf() //创建SparkConf对象
conf.setAppName("OnlineTheTop3ItemForEachCategory2DB") //设置应用程序的名称,在程序运行的监控界面可以看到名称
conf.setMaster("spark://Master:7077") //此时,程序在Spark集群
//conf.setMaster("local[2]")
//设置batchDuration时间间隔来控制Job生成的频率并且创建Spark Streaming执行的入口
val ssc = new StreamingContext(conf, Seconds(5))
ssc.checkpoint("/root/Documents/SparkApps/checkpoint")
val userClickLogsDStream = ssc.socketTextStream("Master", 9999)
val formattedUserClickLogsDStream = userClickLogsDStream.map(clickLog =>
(clickLog.split(" ")(2) + "_" + clickLog.split(" ")(1), 1))
// val categoryUserClickLogsDStream = formattedUserClickLogsDStream.reduceByKeyAndWindow((v1:Int, v2: Int) => v1 + v2,
// (v1:Int, v2: Int) => v1 - v2, Seconds(60), Seconds(20))
val categoryUserClickLogsDStream = formattedUserClickLogsDStream.reduceByKeyAndWindow(_+_,
_-_, Seconds(60), Seconds(20))
categoryUserClickLogsDStream.foreachRDD { rdd => {
if (rdd.isEmpty()) {
println("No data inputted!!!")
} else {
val categoryItemRow = rdd.map(reducedItem => {
val category = reducedItem._1.split("_")(0)
val item = reducedItem._1.split("_")(1)
val click_count = reducedItem._2
Row(category, item, click_count)
})
val structType = StructType(Array(
StructField("category", StringType, true),
StructField("item", StringType, true),
StructField("click_count", IntegerType, true)
))
val hiveContext = new HiveContext(rdd.context)
val categoryItemDF = hiveContext.createDataFrame(categoryItemRow, structType)
categoryItemDF.registerTempTable("categoryItemTable")
val reseltDataFram = hiveContext.sql("SELECT category,item,click_count FROM (SELECT category,item,click_count,row_number()" +
" OVER (PARTITION BY category ORDER BY click_count DESC) rank FROM categoryItemTable) subquery " +
" WHERE rank <= 3")
reseltDataFram.show()
val resultRowRDD = reseltDataFram.rdd
resultRowRDD.foreachPartition { partitionOfRecords => {
if (partitionOfRecords.isEmpty){
println("This RDD is not null but partition is null")
} else {
// ConnectionPool is a static, lazily initialized pool of connections
val connection = ConnectionPool.getConnection()
partitionOfRecords.foreach(record => {
val sql = "insert into categorytop3(category,item,client_count) values(‘" + record.getAs("category") + "‘,‘" +
record.getAs("item") + "‘," + record.getAs("click_count") + ")"
val stmt = connection.createStatement();
stmt.executeUpdate(sql);
})
ConnectionPool.returnConnection(connection) // return to the pool for future reuse
}
}
}
}
}
}
/**
* 在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,在JobScheduler
* 的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和ReceiverTacker的start方法:
* 1,JobGenerator启动后会不断的根据batchDuration生成一个个的Job
* 2,ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动ReceiverSupervisor),在Receiver收到
* 数据后会通过ReceiverSupervisor存储到Executor并且把数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker
* 内部会通过ReceivedBlockTracker来管理接受到的元数据信息
* 每个BatchInterval会产生一个具体的Job,其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD
* 的DAG而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,在JobScheduler中通过线程池的方式找到一个
* 单独的线程来提交Job到集群运行(其实是在线程中基于RDD的Action触发真正的作业的运行),为什么使用线程池呢?
* 1,作业不断生成,所以为了提升效率,我们需要线程池;这和在Executor中通过线程池执行Task有异曲同工之妙;
* 2,有可能设置了Job的FAIR公平调度的方式,这个时候也需要多线程的支持;
*
*/
ssc.start()
ssc.awaitTermination()
}
}
第二部分源码解析
1. 根据SparkConf配置信息创建StreamingContext对象
private[streaming] def createNewSparkContext(conf: SparkConf): SparkContext = {
new SparkContext(conf)
}
由此可见,SparkStreaming确实就是Spark Core上一个复杂的特殊的应用程序。
2. 做checkpint持久化
ssc.checkpoint("/root/Documents/SparkApps/checkpoint")
3. 创建Socket 获取输入流
def socketTextStream(
hostname: String,
port: Int,
storageLevel: StorageLevel = StorageLevel.MEMORY_AND_DISK_SER_2
): ReceiverInputDStream[String] = withNamedScope("socket text stream") {
socketStream[String](hostname, port, SocketReceiver.bytesToLines, storageLevel)
}
4.构建Receiver来接收数据(SocketInputDstream继承自ReceiverInputDStream)
private[streaming]
class SocketInputDStream[T: ClassTag](
ssc_ : StreamingContext,
host: String,
port: Int,
bytesToObjects: InputStream => Iterator[T],
storageLevel: StorageLevel
) extends ReceiverInputDStream[T](ssc_) {
def getReceiver(): Receiver[T] = {
new SocketReceiver(host, port, bytesToObjects, storageLevel)
}
}
abstract class ReceiverInputDStream[T: ClassTag](ssc_ : StreamingContext)
extends InputDStream[T](ssc_) {
5. SocketServer对象调用Receive获取网络数据
def receive() {
var socket: Socket = null
try {
logInfo("Connecting to " + host + ":" + port)
socket = new Socket(host, port)
logInfo("Connected to " + host + ":" + port)
val iterator = bytesToObjects(socket.getInputStream())
while(!isStopped && iterator.hasNext) {
store(iterator.next)
}
if (!isStopped()) {
restart("Socket data stream had no more data")
} else {
logInfo("Stopped receiving")
}
}catch{
case e:java.net.ConnectException =>
restart("Error connecting to " + host + ":" + port, e)
case NonFatal(e) =>
logWarning("Error receiving data", e)
restart("Error receiving data", e)
}finally{
if (socket != null){
socket.close()
logInfo("Closed socket to " + host + ":" +port)
}
}
}
6 . DStream根据时间间隔生成RDD,放到hashMap中
// RDDs generated, marked as private[streaming] so that testsuites can access it @transient private[streaming] var generatedRDDs = new HashMap[Time, RDD[T]] ()
7. DStream经过一系列Transformation操作,在ForEachDStream中生成job
private[streaming]
class ForEachDStream[T: ClassTag] (
parent: DStream[T],
foreachFunc: (RDD[T], Time) => Unit,
displayInnerRDDOps: Boolean
) extends DStream[Unit](parent.ssc) {
override def dependencies: List[DStream[_]] = List(parent)
override def slideDuration: Duration = parent.slideDuration
override def compute(validTime: Time): Option[RDD[Unit]] = None
override def generateJob(time: Time): Option[Job] = {
parent.getOrCompute(time) match {
case Some(rdd) =>
val jobFunc = () => createRDDWithLocalProperties(time, displayInnerRDDOps) {
foreachFunc(rdd, time)
}
Some(new Job(time, jobFunc))
case None => None
}
}
}
8. JobScheduler进行调度(ssc.start())
def start(): Unit = synchronized {
if (eventLoop != null) return // scheduler has already been started
logDebug("Starting JobScheduler")
eventLoop = new EventLoop[JobSchedulerEvent]("JobScheduler") {
override protected def onReceive(event: JobSchedulerEvent): Unit = processEvent(event)
override protected def onError(e: Throwable): Unit = reportError("Error in job scheduler", e)
}
eventLoop.start()
// attach rate controllers of input streams to receive batch completion updates
for {
inputDStream <- ssc.graph.getInputStreams
rateController <- inputDStream.rateController
} ssc.addStreamingListener(rateController)
listenerBus.start(ssc.sparkContext)
receiverTracker = new ReceiverTracker(ssc)
inputInfoTracker = new InputInfoTracker(ssc)
receiverTracker.start()
jobGenerator.start()
logInfo("Started JobScheduler")
}
9.EventLoop(开启新线程进行消息循环)
private val eventThread = new Thread(name) {
setDaemon(true)
10 processEvent(作业启动,完成和失败的解决方式)
private def processEvent(event: JobSchedulerEvent) {
try {
event match {
case JobStarted(job, startTime) => handleJobStart(job, startTime)
case JobCompleted(job, completedTime) => handleJobCompletion(job, completedTime)
case ErrorReported(m, e) => handleError(m, e)
}
} catch {
case e: Throwable =>
reportError("Error in job scheduler", e)
}
}
11 runDummySparkJob
private def runDummySparkJob(): Unit = {
if (!ssc.sparkContext.isLocal) {
ssc.sparkContext.makeRDD(1 to 50, 50).map(x => (x, 1)).reduceByKey(_ + _, 20).collect()
}
assert(getExecutors.nonEmpty)
}
总结:
在StreamingContext调用start方法的内部其实是会启动JobScheduler的Start方法,进行消息循环,在JobScheduler的start内部会构造JobGenerator和ReceiverTacker,并且调用JobGenerator和ReceiverTacker的start方法:
1.JobGenerator启动后会不断的根据batchDuration生成一个个的Job
2.ReceiverTracker启动后首先在Spark Cluster中启动Receiver(其实是在Executor中先启动ReceiverSupervisor),在Receiver收到数据后会通过ReceiverSupervisor存储到Executor并且把数据的Metadata信息发送给Driver中的ReceiverTracker,在ReceiverTracker内部会通过ReceivedBlockTracker来管理接受到的元数据信息.
每个BatchInterval会产生一个具体的Job,其实这里的Job不是Spark Core中所指的Job,它只是基于DStreamGraph而生成的RDD的DAG而已,从Java角度讲,相当于Runnable接口实例,此时要想运行Job需要提交给JobScheduler,在JobScheduler中通过线程池的方式找到一个单独的线程来提交Job到集群运行(其实是在线程中基于RDD的Action触发真正的作业的运行),为什么使用线程池呢?
1,作业不断生成,所以为了提升效率,我们需要线程池;这和在Executor中通过线程池执行Task有异曲同工之妙;
2,有可能设置了Job的FAIR公平调度的方式,这个时候也需要多线程的支持.Spark版本定制第5天:案列解析Spark Streaming运行源码
标签:
原文地址:http://www.cnblogs.com/pzwxySpark/p/Spark5.html