标签:
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14451 Accepted Submission(s): 6840
5 4 1 2 40 1 4 20 2 4 20 2 3 30 3 4 10
50
题意:n个点,m条单向边,求1到n的最大流。
分析:是一道网络流的基础入门题,也是道模板题。
#include <iostream>
#include <cstdio>
#include <cstring>
#include <stack>
#include <queue>
#include <map>
#include <set>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
const double eps = 1e-6;
const double pi = acos(-1.0);
const int INF = 1e9;
const int MOD = 1e9+7;
#define ll long long
#define CL(a,b) memset(a,b,sizeof(a))
#define lson (i<<1)
#define rson ((i<<1)|1)
#define N 1010
int n,m,s,t;
int pre[N];
int mat[N][N];
bool vis[N];
bool bfs()
{
int cur;
queue<int> Q;
CL(pre, 0);
CL(vis, false);
vis[s] = true;
Q.push(s);
while(!Q.empty())
{
cur = Q.front();
Q.pop();
//cout<<cur<<endl;
if(cur == t) return true;
for(int i=1; i<=n; i++)
{
if(!vis[i] && mat[cur][i])
{
Q.push(i);
pre[i] = cur;
vis[i] = true;
//cout<<cur<<"->"<<i<<endl;
}
}
}
return false;
}
int max_flow()
{
int ans = 0;
while(1)
{
if(!bfs()) return ans;
int Min = INF;
for(int i=t; i!=s; i=pre[i])
Min = min(Min, mat[pre[i]][i]);
for(int i=t; i!=s; i=pre[i])
{
mat[pre[i]][i] -= Min;
mat[i][pre[i]] += Min;
}
ans += Min;
}
}
int main()
{
int u,v,c;
while(scanf("%d%d",&m,&n)==2)
{
CL(mat, 0);
s = 1;
t = n;
//Q.push(s);
while(m--)
{
scanf("%d%d%d",&u,&v,&c);
mat[u][v] += c;
}
printf("%d\n",max_flow());
}
return 0;
}
HDU1532 Drainage Ditches (网络流)
标签:
原文地址:http://blog.csdn.net/d_x_d/article/details/51733466