标签:筛选法求素数
Description
Input
Output
Sample Input
2 17 14 17
Sample Output
2,3 are closest, 7,11 are most distant. There are no adjacent primes.
解题思路:
这题做得我都是泪,不断地TLE,好不容易优化好了,又RE,代码也写得很龊。就是正常的二次筛选素数。由于数据很大,第一次筛出46500以内的素数,再根据此筛选出区间内的素数。
注意:虽然给的数没有超int范围,但两数相乘是会超int范围的,我也是在这里RE了。
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
const int N = 1000005;
const int M = 46500;
const int INF = 999999999;
bool notprime[N];
int prime_1[M + 1], prime_2[N];
int num_1 = 0, num_2;
void Prime1() // 第一次筛出46500以内的素数
{
memset(notprime, false, sizeof(notprime));
for(int i = 2; i <= M; i++)
if(!notprime[i])
{
prime_1[num_1++] = i;
for(int j = 2 * i; j <= M; j += i)
notprime[j] = true;
}
}
void Prime2(int l, int u) // 第二次筛出给定范围内的素数
{
memset(notprime, false, sizeof(notprime));
num_2 = 0;
if(l < 2)
l = 2;
int k = sqrt(u * 1.0);
for(int i = 0; i < num_1 && prime_1[i] <= k; i++)
{
int t = l / prime_1[i];
if(t * prime_1[i] < l)
t++;
if(t <= 1)
t = 2;
for(int j = t; (long long)j * prime_1[i] <= u; j++) // 相乘会超范围,用long long
notprime[j * prime_1[i] - l] = 1;
}
for(int i = 0; i <= u - l; i++)
if(!notprime[i])
prime_2[num_2++] = i + l;
}
int main()
{
int l, u, dis, a_1, b_1, a_2, b_2, minn, maxx;;
Prime1();
while(scanf("%d%d", &l, &u) != EOF)
{
minn = INF, maxx = -1;
Prime2(l, u);
if(num_2 < 2)
{
printf("There are no adjacent primes.\n");
continue;
}
for(int i = 1; i < num_2 && prime_2[i] <= u; i++)
{
dis = prime_2[i] - prime_2[i - 1];
if(dis > maxx)
{
a_1 = prime_2[i - 1];
a_2 = prime_2[i];
maxx = dis;
}
if(dis < minn)
{
b_1 = prime_2[i-1];
b_2 = prime_2[i];
minn = dis;
}
}
printf("%d,%d are closest, %d,%d are most distant.\n", b_1, b_2, a_1, a_2);
}
return 0;
}
Prime Distance(二次筛素数),布布扣,bubuko.com
标签:筛选法求素数
原文地址:http://blog.csdn.net/userluoxuan/article/details/38404185