标签:
1 高精度(含大数开方)+二分
一个技巧和三点注意:
技巧:假设k^n=p;(k的n次方),那么p的位数/n得到的是k的位数!例如:n=7,p=4357186184021382204544,p的位数为22,用22/7的结果向上取整,得到4,即为k的位数,也就是说k的取值范围是1000~9999。(引自code_pang)不利用这一点,高精度+直接二分,也会超时。用这一个技巧合理缩小二分的范围。
注意:看code的main中的注释。
(二分思想不熟练,因为二分算法很高效,所以一定要暴力点直接确定left和right,然后根据情况,优化也是将left变大和right变小,而不会是其他奇怪的情况。另外,注意left=mid+1,right=mid-1,这很重要)
#include <stdio.h>
#include <math.h>
#include <string.h>
#include <iostream>
#include <string>
#include <algorithm>
using namespace std;
const int numlen = 105; // 位数
int max(int a, int b) { return a>b?a:b; }
struct bign {
int len, s[numlen];
bign() {
memset(s, 0, sizeof(s));
len = 1;
}
bign(int num) { *this = num; }
bign(const char *num) { *this = num; }
bign operator = (const int num) {
char s[numlen];
sprintf(s, "%d", num);
*this = s;
return *this;
}
bign operator = (const char *num) {
len = strlen(num);
while(len > 1 && num[0] == '0') num++, len--;
for(int i = 0;i < len; i++) s[i] = num[len-i-1] - '0';
return *this;
}
void deal() {
while(len > 1 && !s[len-1]) len--;
}
bign operator + (const bign &a) const {
bign ret;
ret.len = 0;
int top = max(len, a.len) , add = 0;
for(int i = 0;add || i < top; i++) {
int now = add;
if(i < len) now += s[i];
if(i < a.len) now += a.s[i];
ret.s[ret.len++] = now%10;
add = now/10;
}
return ret;
}
bign operator - (const bign &a) const {
bign ret;
ret.len = 0;
int cal = 0;
for(int i = 0;i < len; i++) {
int now = s[i] - cal;
if(i < a.len) now -= a.s[i];
if(now >= 0) cal = 0;
else {
cal = 1; now += 10;
}
ret.s[ret.len++] = now;
}
ret.deal();
return ret;
}
bign operator * (const bign &a) const {
bign ret;
ret.len = len + a.len;
for(int i = 0;i < len; i++) {
for(int j = 0;j < a.len; j++)
ret.s[i+j] += s[i]*a.s[j];
}
for(int i = 0;i < ret.len; i++) {
ret.s[i+1] += ret.s[i]/10;
ret.s[i] %= 10;
}
ret.deal();
return ret;
}
//乘以小数,直接乘快点
bign operator * (const int num) {
bign ret;
ret.len = 0;
int bb = 0;
for(int i = 0;i < len; i++) {
int now = bb + s[i]*num;
ret.s[ret.len++] = now%10;
bb = now/10;
}
while(bb) {
ret.s[ret.len++] = bb % 10;
bb /= 10;
}
ret.deal();
return ret;
}
bign operator / (const bign &a) const {
bign ret, cur = 0;
ret.len = len;
for(int i = len-1;i >= 0; i--) {
cur = cur*10;
cur.s[0] = s[i];
while(cur >= a) {
cur -= a;
ret.s[i]++;
}
}
ret.deal();
return ret;
}
bign operator % (const bign &a) const {
bign b = *this / a;
return *this - b*a;
}
bign operator += (const bign &a) { *this = *this + a; return *this; }
bign operator -= (const bign &a) { *this = *this - a; return *this; }
bign operator *= (const bign &a) { *this = *this * a; return *this; }
bign operator /= (const bign &a) { *this = *this / a; return *this; }
bign operator %= (const bign &a) { *this = *this % a; return *this; }
bool operator < (const bign &a) const {
if(len != a.len) return len < a.len;
for(int i = len-1;i >= 0; i--) if(s[i] != a.s[i])
return s[i] < a.s[i];
return false;
}
bool operator > (const bign &a) const { return a < *this; }
bool operator <= (const bign &a) const { return !(*this > a); }
bool operator >= (const bign &a) const { return !(*this < a); }
bool operator == (const bign &a) const { return !(*this > a || *this < a); }
bool operator != (const bign &a) const { return *this > a || *this < a; }
string str() const {
string ret = "";
for(int i = 0;i < len; i++) ret = char(s[i] + '0') + ret;
return ret;
}
};
istream& operator >> (istream &in, bign &x) {
string s;
in >> s;
x = s.c_str();
return in;
}
ostream& operator << (ostream &out, const bign &x) {
out << x.str();
return out;
}
// 大数开平方
bign Sqrt(bign x) {
int a[numlen/2];
int top = 0;
for(int i = 0;i < x.len; i += 2) {
if(i == x.len-1) {
a[top++] = x.s[i];
}
else
a[top++] = x.s[i] + x.s[i+1]*10;
}
bign ret = (int)sqrt((double)a[top-1]);
int xx = (int)sqrt((double)a[top-1]);
bign pre = a[top-1] - xx*xx;
bign cc;
for(int i = top-2;i >= 0; i--) {
pre = pre*100 + a[i];
cc = ret*20;
for(int j = 9;j >= 0; j--) {
bign now = (cc + j)*j;
if(now <= pre) {
ret = ret*10 + j;
pre -= now;
break;
}
}
}
return ret;
}
int main(){
//test:
bign aa=6;
bign bb=7;
bign cc=(aa+bb)/2;
cout<<cc<<endl;
int a;
bign b;
int flag;
while(cin>>a>>b){
flag=1;
int len=b.len;
int pos;
if(len%a==0){
pos=len/a;
}
else if(len%a!=0){
pos=len/a+1;
}
bign sum=1;
bign mid;
bign left=pow(10.0,(int)pos-1);
bign right=pow(10.0,(int)pos);
/*在math.h中,函数pow有三种重载形式:
long double pow(long double,int)
float pow(float,int)
double pow(double,int)
对于所给的参数int,int,如果编译器无法判断应该匹配哪个函数,因此报编译错误
可以将代码改为pow(10.0,(int)i)
*/
while(left<=right){
mid=(left+right)/2;
sum=1;
for(int i=1;i<=a;i++){
sum=mid*sum;
}
if(sum==b){
cout<<mid<<endl;
break;
}
else if(sum<b){
left=mid+1;//二分尤其不要忘记,left=mid+1 而非=mid!
}
else if(sum>b){
right=mid-1;//二分尤其不要忘记,right=mid-1 而非=mid!
}
if(left>right){
flag=0;
break;
}
}
//然而OJ给的数据并不是像题目中所说k一定是整数,所以最后取满足k^n=p的不大于k的最大的整数。
//另外,还要注意最后判断一步时,也要判断sum>b是否会出现这种情况,如果不判断提交WA,判断就AC了。但为什么还要加sum>b的判断?!不理解。
if(!flag){
mid=(left+right)/2;
sum=1;
for(int i=1;i<=a;i++){
sum=mid*sum;
}
if(sum>b){
cout<<mid-1<<endl;
}
else{
cout<<mid<<endl;
}
}
}
}
C语言里对float类型数据的表示范围为-3.4*10^38~+3.4*10^38。double为-1.7*10^-308~1.7*10^308,long double为-1.2*10^-4932~1.2*10^4932.
|
类型 |
比特(位)数 |
有效数字 |
数值范围 |
|
float |
32 |
6~7 |
-3.4*10^38~+3.4*10^38 |
|
double |
64 |
15~16 |
-1.7*10^-308~1.7*10^308 |
|
long double |
128/ |
18~19 |
-1.2*10^-4932~1.2*10^4932 |
#include <iostream>
#include <math.h>
using namespace std;
int main(){
double a,b,c;
while(cin>>a>>b){
if(a==0){
break;
}
cout<<pow(b,1/a)<<endl;
}
return 0;
}
标签:
原文地址:http://blog.csdn.net/a272846945/article/details/51945568