标签:des style blog http color 使用 os io
DES算法全称为Data Encryption Standard,即数据加密算法,它是IBM公司于1975年研究成功并公开发表的。DES算法的入口参数有三个:Key、Data、Mode。其中Key为8个字节共64位,是DES算法的工作密钥;Data也为8个字节64位,是要被加密或被解密的数据;Mode为DES的工作方式,有两种:加密或解密。
DES 使用一个56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小。这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半。使用子密钥对其中一半应用循环功能,然后将输出与另一半进行“异或”运算;接着交换这两半,这一过程会继续下去,但最后一个循环不交换。DES 使用16 个循环,使用异或,置换,代换,移位操作四种基本运算。
DES 的常见变体是三重 DES,使用168 位的密钥对资料进行三次加密的一种机制;它通常(但非始终)提供极其强大的安全性。如果三个 56 位的子元素都相同,则三重 DES 向后兼容DES。
攻击 DES 的主要形式被称为蛮力的或彻底密钥搜索,即重复尝试各种密钥直到有一个符合为止。如果 DES 使用56 位的密钥,则可能的密钥数量是 2 的 56次方个。随着计算机系统能力的不断发展,DES 的安全性比它刚出现时会弱得多,然而从非关键性质的实际出发,仍可以认为它是足够的。不过,DES 现在仅用于旧系统的鉴定,而更多地选择新的加密标准 — 高级加密标准(AdvancedEncryption Standard,AES).
该算法被允许用于安全报文传送MAC机制密文运算,算法的详细过程在ISO8731-1、ISO8732、ISO/IEC10116中定义。
<<DES.h>>
namespace Des
{
enum
{
ECB = 0,
CBC = 1
};
enum
{
ENCRYPT = 0,
DECRYPT = 1
};
typedef BYTE (*PSUBKEY)[16][48];
void ByteToBit(const BYTE* pIn, BYTE byBits, BYTE* pOut);
void BitToByte(const BYTE* pIn, BYTE byBits, BYTE* pOut);
void LeftShift(BYTE* pIn, BYTE byInLen, BYTE byOffset);
void Xor(const BYTE* pIn, BYTE byLen, BYTE* pInOut);
void Transform(const BYTE* pIn, const bool* pTable, BYTE len, bool* pOut);
void S_func(const BYTE in[48], BYTE out[32]);
void F_func(const BYTE ki[48], BYTE out[32]);
void SetSubKey(PSUBKEY pSubKey, const BYTE Key[8]);
void DoDes(int nMode, int nOperator, const BYTE* input, int nInLen, const BYTE* key, int nKeyLen, BYTE* output, const BYTE* init_Vector= NULL);
BOOL DoDes(int nMode, int nOperator, string strText, string KEK, string &OutData,const BYTE* init_Vector = NULL);
void DoDesMac(string intText, string KEK, string &OutData, const BYTE* init_Vector = NULL);
void DoSSMac(string intText, string KEK, string &OutData,int _Length);
void DoGPMac(string intText, string KEK, string &OutData);
void RunDes(const BYTE In[8], int nType, BYTE* Key, BYTE Out[8]);
void DoDesMac(const BYTE* input, int nDataLen, const BYTE* key, int nKeyLen, BYTE* output, const BYTE* init_Vector = NULL);
void DoSSMac(const BYTE* input, int nDataLen, const BYTE* key, int nKeyLen, BYTE* output);
void DoGPMac(const BYTE* input, int nInLen, const BYTE* key, int nKeyLen, BYTE* output);
string DesVerify(string Stxt);
}
namespace Des
{
// initial permutation IP
const BYTE IP_Table[64] = {
58, 50, 42, 34, 26, 18, 10, 2, 60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6, 64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1, 59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5, 63, 55, 47, 39, 31, 23, 15, 7
};
// final permutation IP^-1
const BYTE IPR_Table[64] = {
40, 8, 48, 16, 56, 24, 64, 32, 39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30, 37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28, 35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26, 33, 1, 41, 9, 49, 17, 57, 25
};
// expansion operation matrix
const BYTE E_Table[48] = {
32, 1, 2, 3, 4, 5, 4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13, 12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21, 20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29, 28, 29, 30, 31, 32, 1
};
// 32-bit permutation function P used on the output of the S-boxes
const BYTE P_Table[32] = {
16, 7, 20, 21, 29, 12, 28, 17, 1, 15, 23, 26, 5, 18, 31, 10,
2, 8, 24, 14, 32, 27, 3, 9, 19, 13, 30, 6, 22, 11, 4, 25
};
// permuted choice table (key)
const BYTE PC1_Table[56] = {
57, 49, 41, 33, 25, 17, 9, 1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27, 19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15, 7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29, 21, 13, 5, 28, 20, 12, 4
};
// permuted choice key (table)
const BYTE PC2_Table[48] = {
14, 17, 11, 24, 1, 5, 3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8, 16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55, 30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53, 46, 42, 50, 36, 29, 32
};
// number left rotations of pc1
const BYTE LR_Table[16] = {1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1};
// The (in)famous S-boxes
const BYTE S_Box[8][4][16] = {
// S1
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
// S2
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
// S3
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
// S4
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
// S5
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
// S6
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
// S7
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
// S8
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
};
void ByteToBit(const BYTE* pIn, BYTE byBits, BYTE* pOut)
{
for (int i = 0; i < byBits; ++ i)
{
pOut[i] = (pIn[i >> 3] >> (7 - i & 7)) & 1;
}
}
void BitToByte(const BYTE* pIn, BYTE byBits, BYTE* pOut)
{
memset(pOut, 0, byBits >> 3);
for (int i = 0; i < byBits; ++ i)
{
pOut[i >> 3] |= (pIn[i] << (7 - i & 7));
}
}
void LeftShift(BYTE* pIn, BYTE byInLen, BYTE byOffset)
{
BYTE temp[256];
memcpy(temp, pIn, byOffset);
memcpy(pIn, pIn + byOffset, byInLen - byOffset);
memcpy(pIn + byInLen - byOffset, temp, byOffset);
}
void Xor(const BYTE* pIn1, const BYTE* pIn2, BYTE byLen, BYTE* pInOut)
{
for (int i = 0; i < byLen; ++ i)
{
pInOut[i] = pIn1[i] ^ pIn2[i];
}
}
void Transform(const BYTE* pIn, const BYTE* pTable, BYTE len, BYTE* pOut)
{
BYTE temp[64];
for (int i = 0; i < len; ++ i)
{
temp[i] = pIn[pTable[i] - 1];
}
memcpy(pOut, temp, len);
}
void S_func(const BYTE in[48], BYTE out[32]) //4BIT 代替 6BIT
{
for (BYTE i = 0, j, k; i < 8; ++ i, in += 6, out += 4)
{
j = (in[0] << 1) + in[5];
k = (in[1] << 3) + (in[2] << 2) + (in[3] << 1) + in[4]; //组织SID下标
for (BYTE l = 0; l < 4; ++ l) //把相应4bit赋值
{
out[l] = (S_Box[i][j][k] >> (3 - l)) & 1;
}
}
}
void F_func(const BYTE ki[48], BYTE out[32])
{
BYTE MR[48];
Transform(out, E_Table, 48, MR); //扩展置换E
Xor(ki, MR, 48, MR);
S_func(MR, out);
Transform(out, P_Table, 32, out);
}
void SetSubKey(PSUBKEY pSubKey, const BYTE Key[8])
{
BYTE K[64];
BYTE* KL = &K[0];
BYTE* KR = &K[28];
ByteToBit(Key, 64, K);
Transform(K, PC1_Table, 56, K);
for (int i = 0; i < 16; ++ i)
{
LeftShift(KL, 28, LR_Table[i]);
LeftShift(KR, 28, LR_Table[i]);
Transform(K, PC2_Table, 48, (*pSubKey)[i]);
}
}
void RunDes(const BYTE* In, int nOperator, const PSUBKEY pSubKey, BYTE* Out)
{
BYTE M[64];
BYTE temp[32];
BYTE* li = &M[0];
BYTE* ri = &M[32];
ByteToBit(In, 64, M);
Transform(M, IP_Table, 64, M); //
if (ENCRYPT == nOperator)
{
for (int i = 0; i < 16; ++ i)
{
memcpy(temp, ri, 32); //Ri[i-1] 保存
F_func((*pSubKey)[i], ri); //Ri[i-1]经过转化和SBox输出为P盒
Xor(li, ri, 32, ri); //Ri[i] = P XOR Li[i-1]
memcpy(li, temp, 32); //Li[i] = Ri[i-1]
}
}
else
{
for (int i = 15; i >= 0; --i)
{
memcpy(temp, ri, 32); //Ri[i-1] 保存
F_func((*pSubKey)[i], ri); //Ri[i-1]经过转化和SBox输出为P
Xor(li, ri, 32, ri); //Ri[i] = P XOR Li[i-1]
memcpy(li, temp, 32); //Li[i] = Ri[i-1]
}
}
LeftShift(M, 64, 32); //Ri与Li换位重组M
Transform(M, IPR_Table, 64, M); //最后结果进行转化
BitToByte(M, 64, Out); //组织成字符
}
void DoDes(int nMode, int nOperator, const BYTE* input, int nInLen, const BYTE* key, BYTE nKeyLen, BYTE* output, const BYTE* init_Vector)
{
BYTE bySubKey[3][16][48]; //秘钥
memset(bySubKey, 0x01, sizeof(bySubKey));
//构造并生成SubKeys
BYTE nKey = (nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3);
for (int i = 0; i < nKey; i++)
{
SetSubKey(&bySubKey[i], &key[i << 3]);
}
int j = nInLen >> 3;
if (nMode == ECB) //ECB模式
{
if (1 == nKey) //单Key
{
for (int i = 0; i < j; ++i, output += 8, input += 8)
{
RunDes(input, nOperator, &bySubKey[0], output);
}
}
else if (2 == nKey) //3DES 2Key
{
for (int i = 0; i < j; ++i, output += 8, input += 8)
{
RunDes(input, nOperator, &bySubKey[0], output);
RunDes(output, !nOperator, &bySubKey[1], output);
RunDes(output, nOperator, &bySubKey[0], output);
}
}
else //3DES 3Key
{
for (int i = 0; i < j; ++i, output += 8, input += 8)
{
RunDes(input, nOperator, &bySubKey[nOperator ? 2 : 0], output);
RunDes(output, !nOperator, &bySubKey[1], output);
RunDes(output, nOperator, &bySubKey[nOperator ? 0 : 2], output);
}
}
}
else //CBC模式 如果init_Vector为NULL则设置初始向量为8字节的0
{
BYTE byVector[8]; //扭转向量
BYTE byTemp[8]; //中间变量
memset(byVector, 0x00, sizeof(byVector));
memset(byTemp, 0x00, sizeof(byTemp));
if (init_Vector)
{
memcpy(byVector, init_Vector, 8);
}
if (nKey == 1) //单Key
{
for (int i = 0; i < j; ++i, output += 8, input += 8)
{
if (ENCRYPT == nOperator)
{
Xor(input, byVector, 8, byTemp); //将输入与扭转变量异或
}
else
{
memcpy(byTemp, input, 8);
}
RunDes(byTemp, nOperator, &bySubKey[0], output);
if (ENCRYPT == nOperator)
{
memcpy(byVector, output, 8); //将输出设定为扭转变量
}
else
{
Xor(output, byVector, 8, output); //将输出与扭转变量异或
memcpy(byVector, byTemp, 8); //将输入设定为扭转变量
}
}
}
else if (nKey == 2) //3DES CBC 2Key
{
for (int i = 0; i < j; ++i, output += 8, input += 8)
{
if (ENCRYPT == nOperator)
{
for (int j = 0; j < 8; ++j) //将输入与扭转变量异或
{
byTemp[j] = input[j] ^ byVector[j];
}
}
else
{
memcpy(byTemp, input, 8);
}
RunDes(byTemp, nOperator, &bySubKey[0], output);
RunDes(output, !nOperator, &bySubKey[1], output);
RunDes(output, nOperator, &bySubKey[0], output);
if (ENCRYPT == nOperator)
{
memcpy(byVector, output, 8); //将输出设定为扭转变量
}
else
{
for (int j = 0; j < 8; ++j) //将输出与扭转变量异或
{
output[j] = output[j] ^ byVector[j];
}
memcpy(byVector, byTemp, 8); //将输入设定为扭转变量
}
}
}
else //3DES CBC 3Key
{
for (int i = 0; i < j; ++i, output += 8, input += 8)
{
if (ENCRYPT == nOperator)
{
for (int j = 0; j < 8; ++j) //将输入与扭转变量异或
{
byTemp[j] = input[j] ^ byVector[j];
}
}
else
{
memcpy(byTemp, input, 8);
}
RunDes(byTemp, nOperator, &bySubKey[nOperator ? 2 : 0], output);
RunDes(output, !nOperator, &bySubKey[1], output);
RunDes(output, nOperator, &bySubKey[nOperator ? 0 : 2], output);
if (ENCRYPT == nOperator)
{
memcpy(byVector, output, 8); //将输出设定为扭转变量
}
else
{
for (int j = 0; j < 8; ++j) //将输出与扭转变量异或
{
output[j] = output[j] ^ byVector[j];
}
memcpy(byVector, byTemp, 8); //将输入设定为扭转变量
}
}
}
}
}
BOOL DoDes(int nMode, int nOperator, string strText, string KEK, string &OutData,const BYTE* init_Vector)
{
BYTE key[33]= {0};
BYTE input[512] = {0};
BYTE output[512] = {0};
int nInLen = strText.length()/2;
BYTE nKeyLen=(BYTE)KEK.length()/2;
strings::HexToAsc(strText, input);
strings::HexToAsc(KEK, key);
if(nInLen%8!=0 || nKeyLen%8!=0 || nInLen==0 || nKeyLen==0){
return false;
}
DoDes(nMode, nOperator, input, nInLen, key, nKeyLen, output, init_Vector);
strings::AscToHex(output, nInLen, OutData);
return true;
}
//ANSI X9.9 MAC DES CBC
void DoDesMac(string intText, string KEK, string &OutData, const BYTE* init_Vector)
{
BYTE byVector[8];
BYTE byTemp[8];
BYTE byData[128];
BYTE Input[512]={0};
BYTE Key[512]={0};
int nInLen;
BYTE nKeyLen;
BYTE Output[512]={0};
BYTE *input=Input;
BYTE *key=Key;
BYTE *output=Output;
nInLen=(BYTE)intText.length()/2;
nKeyLen=(BYTE)KEK.length()/2;
strings::HexToAsc(intText, input);
strings::HexToAsc(KEK, key);
memset(byVector, 0x00, sizeof(byVector));
memset(byTemp, 0x00, sizeof(byTemp));
memset(byData, 0x00, sizeof(byData));
BYTE bySubKey[3][16][48]; //秘钥
memset(bySubKey, 0x01, sizeof(bySubKey));
//构造并生成SubKeys
BYTE nKey = (nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3);
for (int i = 0; i < nKey; i ++ )
{
SetSubKey(&bySubKey[i], &key[i << 3]);
}
int j = nInLen >> 3;
if (init_Vector != NULL)
{
memcpy(byVector, init_Vector, 8);
}
if (1 == nKey) //单倍长Key(8字节)
{
for (int i = 0; i < j; ++ i, input += 8)
{
Xor(input, byVector, 8, byTemp);
RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
memcpy(byVector, output, 8); //将输出设定为扭转变量
}
}
else if (2 == nKey) //双倍长Key(16字节)
{
for (int i = 0; i < j; ++ i, input += 8)
{
Xor(input, byVector, 8, byTemp);
RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
RunDes(output, DECRYPT, &bySubKey[1], output);
RunDes(output, ENCRYPT, &bySubKey[0], output);
memcpy(byVector, output, 8); //将输出设定为扭转变量
}
}
else //三倍长Key(24字节) 尚未验证
{
for (int i = 0; i < j; ++ i, input += 8)
{
Xor(input, byVector, 8, byTemp);
RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
RunDes(output, DECRYPT, &bySubKey[1], output);
RunDes(output, ENCRYPT, &bySubKey[2], output);
memcpy(byVector, output, 8); //将输出设定为扭转变量
}
}
strings::AscToHex(Output, 8, OutData);
}
//该函数的计算结果与卫士通dll计算MAC的结果一样
//input中要有80 + 00.... input的前8字节作为初始向量
void DoSSMac(string intText, string KEK, string &OutData,int _Length)
{
int nInLen=(int)intText.length()/2;
int nKeyLen=(int)KEK.length()/2;
unsigned char *input = new unsigned char[nInLen];
unsigned char *key = new unsigned char[nKeyLen];
strings::HexToAsc((const unsigned char*)intText.c_str(), nInLen*2, input);
strings::HexToAsc((const unsigned char*)KEK.c_str(), nKeyLen*2, key);
BYTE byInitVec[8]; //初始向量
BYTE byTemp[8];
BYTE output[8];
memset(byInitVec, 0x00, sizeof(byInitVec));
memset(byTemp, 0x00, sizeof(byTemp));
memset(output, 0x00, sizeof(output));
memcpy(byInitVec, input, 8);
BYTE bySubKey[3][16][48]; //秘钥
memset(bySubKey, 0x01, sizeof(bySubKey));
int i = 0;
int j = (nInLen >> 3);
//构造并生成SubKeys
BYTE nKey = (BYTE)((nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3));
for (i = 0; i < nKey; i ++ )
{
SetSubKey(&bySubKey[i], &key[i << 3]);
}
memcpy(output, input, 8);
if (1 == nKey) //单倍长Key(8字节)
{
j--;
for (int i = 0; i < j; ++ i)
{
Xor(input + 8 * (i + 1), output, 8, output);
RunDes(output, 0, &bySubKey[0], output);
//memcpy(byInitVec, output, 8); //将输出设定为扭转变量
}
}
else if (2 == nKey) //双倍长Key(16字节)
{
j -= 2;
for (i = 0; i < j; ++ i)
{
Xor(input + 8 * (i + 1), output, 8, output);
RunDes(output, 0, &bySubKey[0], output); //将输出设定为扭转变量
}
Xor(input + 8 * ( ++ i), output, 8, output); //最后一块数据和上面加密结果异或
RunDes(output, 0, &bySubKey[0], output);
RunDes(output, 1, &bySubKey[1], output);
RunDes(output, 0, &bySubKey[0], output);
}
else //三倍长Key(24字节) 尚未验证
{
//j -= 2;
for (i = 0, j = (nInLen >> 3) - 2; i < j; ++ i, input += 8)
{
Xor(input + 8 * (i + 1), output, 8, byTemp);
RunDes(byTemp, 0, &bySubKey[0], output);
memcpy(byInitVec, output, 8); //将输出设定为扭转变量
}
Xor(input + 8 * i, output, 8, output);
RunDes(output, 2, &bySubKey[0], output);
RunDes(output, 1, &bySubKey[1], output);
RunDes(output, 0, &bySubKey[0], output);
}
strings::AscToHex(output, _Length , OutData);
}
//input中不要自己填补80 + 00.... 初始向量固定为8字节的0
void DoGPMac(string intText, string KEK, string &OutData)
{
BYTE byInData[256]; //密钥,输入数据
BYTE byEnter[256];
BYTE byResult[256]; //算法模式,算法操作,输入,结果
int nInLen;
int nKeyLen;
BYTE Output[512]={0};
BYTE Input[512]={0};
BYTE Key[512]={0};
BYTE *input=Input;
BYTE *key=Key;
BYTE *output=Output;
nInLen=intText.length()/2;
nKeyLen=KEK.length()/2;
strings::HexToAsc(intText, input);
strings::HexToAsc(KEK, key);
memset(byInData, 0x00, sizeof(byInData));
memcpy(byInData, input, nInLen);
byInData[nInLen] = 0x80;
nInLen ++ ;
nInLen += (8 - nInLen % 8); //80 + (nInLen % 8)个00
int j = 0;
memset(byResult, 0x00, sizeof(byResult));
for (int i = 0; i < nInLen / 8; i ++ )
{
memset(byEnter, 0x00, sizeof(byEnter));
for (j = 0; j < 8; j ++ )
{
byEnter[j + 8] = byResult[j] ^ byInData[8 * i + j]; //byEnter的前8字节(全0)为初始向量)
}
// DoSSMac(byEnter, 16, key, nKeyLen, byResult); //特别注意
}
memcpy(output, byResult, 8);
strings::AscToHex(Output,strlen((char*)Output) , OutData);
}
//ANSI X9.9 MAC
void DoDesMac(const BYTE* input, int nInLen, const BYTE* key, BYTE nKeyLen, BYTE* output, const BYTE* init_Vector)
{
BYTE byVector[8];
BYTE byTemp[8];
BYTE byData[128];
memset(byVector, 0x00, sizeof(byVector));
memset(byTemp, 0x00, sizeof(byTemp));
memset(byData, 0x00, sizeof(byData));
BYTE bySubKey[3][16][48]; //秘钥
memset(bySubKey, 0x01, sizeof(bySubKey));
//构造并生成SubKeys
BYTE nKey = (nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3);
for (int i = 0; i < nKey; i++)
{
SetSubKey(&bySubKey[i], &key[i << 3]);
}
int j = nInLen >> 3;
if (init_Vector != NULL)
{
memcpy(byVector, init_Vector, 8);
}
if (1 == nKey) //单倍长Key(8字节)
{
for (int i = 0; i < j; ++i, input += 8)
{
Xor(input, byVector, 8, byTemp);
RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
memcpy(byVector, output, 8); //将输出设定为扭转变量
}
}
else if (2 == nKey) //双倍长Key(16字节)
{
for (int i = 0; i < j; ++i, input += 8)
{
Xor(input, byVector, 8, byTemp);
RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
RunDes(output, DECRYPT, &bySubKey[1], output);
RunDes(output, ENCRYPT, &bySubKey[0], output);
memcpy(byVector, output, 8); //将输出设定为扭转变量
}
}
else //三倍长Key(24字节) 尚未验证
{
for (int i = 0; i < j; ++i, input += 8)
{
Xor(input, byVector, 8, byTemp);
RunDes(byTemp, ENCRYPT, &bySubKey[0], output);
RunDes(output, DECRYPT, &bySubKey[1], output);
RunDes(output, ENCRYPT, &bySubKey[2], output);
memcpy(byVector, output, 8); //将输出设定为扭转变量
}
}
}
//input中要有80+00.... input的前8字节作为初始向量
void DoSSMac(const BYTE* input, int nInLen, const BYTE* key, BYTE nKeyLen, BYTE* output)
{
BYTE byInitVec[8]; //初始向量
BYTE byTemp[8];
memset(byInitVec, 0x00, sizeof(byInitVec));
memset(byTemp, 0x00, sizeof(byTemp));
memcpy(byInitVec, input, 8);
BYTE bySubKey[3][16][48]; //秘钥
memset(bySubKey, 0x01, sizeof(bySubKey));
int i = 0;
int j = (nInLen >> 3);
//构造并生成SubKeys
BYTE nKey = (nKeyLen >> 3) > 3 ? 3 : (nKeyLen >> 3);
for (i = 0; i < nKey; i++)
{
SetSubKey(&bySubKey[i], &key[i << 3]);
}
memcpy(output, input, 8);
if (1 == nKey) //单倍长Key(8字节)
{
j--;
for (int i = 0; i < j; ++i)
{
Xor(input + 8 * (i + 1), output, 8, output);
RunDes(output, 0, &bySubKey[0], output);
//memcpy(byInitVec, output, 8); //将输出设定为扭转变量
}
}
else if (2 == nKey) //双倍长Key(16字节)
{
j -= 2;
for (i = 0; i < j; ++i)
{
Xor(input + 8 * (i + 1), output, 8, output);
RunDes(output, 0, &bySubKey[0], output); //将输出设定为扭转变量
}
Xor(input + 8 * (++i), output, 8, output); //最后一块数据和上面加密结果异或
RunDes(output, 0, &bySubKey[0], output);
RunDes(output, 1, &bySubKey[1], output);
RunDes(output, 0, &bySubKey[0], output);
}
else //三倍长Key(24字节) 尚未验证
{
//j -= 2;
for (i = 0, j = (nInLen >> 3) - 2; i < j; ++i, input += 8)
{
Xor(input + 8 * (i + 1), output, 8, byTemp);
RunDes(byTemp, 0, &bySubKey[0], output);
memcpy(byInitVec, output, 8); //将输出设定为扭转变量
}
Xor(input + 8 * i, output, 8, output);
RunDes(output, 2, &bySubKey[0], output);
RunDes(output, 1, &bySubKey[1], output);
RunDes(output, 0, &bySubKey[0], output);
}
}
//input中不要自己填补80+00.... 初始向量固定为8字节的0
void DoGPMac(const BYTE* input, int nInLen, const BYTE* key, int nKeyLen, BYTE* output)
{
BYTE byInData[256]; //密钥,输入数据
BYTE byEnter[256];
BYTE byResult[256]; //算法模式,算法操作,输入,结果
memset(byInData, 0x00, sizeof(byInData));
memcpy(byInData, input, nInLen);
byInData[nInLen] = 0x80;
nInLen++;
nInLen += (8 - nInLen % 8); //80 + (nInLen % 8)个00
int j = 0;
memset(byResult, 0x00, sizeof(byResult));
for (int i = 0; i < nInLen / 8; i++)
{
memset(byEnter, 0x00, sizeof(byEnter));
for (j = 0; j < 8; j++)
{
byEnter[j + 8] = byResult[j] ^ byInData[8 * i + j]; //byEnter的前8字节(全0)为初始向量)
}
DoSSMac(byEnter, 16, key, (BYTE)nKeyLen, byResult); //特别注意
}
memcpy(output, byResult, 8);
}
string DesVerify(string Stxt)
{
string OutPut;
DoDes(ECB, ENCRYPT, "0000000000000000", Stxt, OutPut);
return OutPut.substr(0, 6);
}
}
Des工具可以实现Des,3Des,Mac,Disp(离散)等功能,支持批量Des计算(需选择File)。对数据不足8的倍数字节实现自动补齐。
文/闫鑫原创
标签:des style blog http color 使用 os io
原文地址:http://blog.csdn.net/yxstars/article/details/38424021